VKR Classes

VKR Sir B.Tech., IIT DELHI

with you since 15 years

Time : 1 hr. **Test Paper 08** Date 04/01/15 Batch - R Marks : 120 SINGLE CORRECT CHOICE TYPE [4, -1] If the complex number z satisfies the condition $|z| \ge 3$, then the least value of $|z + \frac{1}{z}|$ is equal to : 1. (B) 8/3 (A) 5/3 (C) 11/3 (D) none of these $\int (|\cos t|\sin t + |\sin t|\cos t) dt$ has the value equal to The integral, 2. (C) $1/\sqrt{2}$ (A) 0 (B) 1/2 (D) 1 A curve is represented parametrically by the equations $x = t + e^{at}$ and $y = -t + e^{at}$ when $t \in R$ and 3. a > 0. If the curve touches the axis of x at the point A, then the coordinates of the point A are (A) (1, 0) (B) (1/e, 0) (C) (e, 0) (D) (2e, 0) If $z = x + iy \& \omega = \frac{1 - iz}{z - i}$ then $|\omega| = 1$ implies that, in the complex plane : 4. (A) z lies on the imaginary axis (B) z lies on the real axis (C) z lies on the unit circle (D) none 5. Let ABCD be a tetrahedron such that the edges AB, AC and AD are mutually perpendicular. Let the area of triangles ABC, ACD and ADB be 3, 4 and 5 sq. units respectively. Then the area of the triangle BCD, is (C) $\frac{5}{\sqrt{2}}$ (D) $\frac{5}{2}$ (A) $5\sqrt{2}$ (B) 5 Let C₁ and C₂ are concentric circles of radius 1 and 8/3 respectively having centre at (3, 0) on the 6. argand plane. If the complex number z satisfies the inequality, $\log_{1/3}\left(\frac{|z-3|^2+2}{11|z-3|-2}\right) > 1$ then : (A) z lies outside C_1 but inside C_2 (B) z lies inside of both C_1 and C_2 (C) z lies outside both of C_1 and C_2 (D) none of these The region represented by inequalities $\operatorname{Arg} Z \leq \frac{\pi}{3}$; $|Z| \leq 2$; $\operatorname{Im}(z) \geq 1$ in the Argand diagram is given by 7. (C) (A) (B) (D)

VKR Classes, C 339-340 Indra Vihar, Kota. Mob. No. 9829036305

(C) 2

(D) more than 2

Number of roots of the function $f(x) = \frac{1}{(x+1)^3} - 3x + \sin x$ is

(B) 1

8.

(A) 0

18. Two opposite sides of rhombus are x + y = 1 and x + y = 5. If one vertex is (2, -1) and the angle at the vertex is 45°, a vertex opposite to the given vertex is. (A) $(6 + 2\sqrt{2}, -1 - 2\sqrt{2})$ (B) $(6 - 2\sqrt{2}, 1 + 2\sqrt{2})$ (C) $(6 - 2\sqrt{2}, 1 - 2\sqrt{2})$ (D) none of these 19. If $f(x) = sgn(sin^2x - sinx - 1)$ has exactly four points of discontinuity for $x \in (0, n\pi)$, $n \in N$ then (A) the minimum value of n is 5 (B) the maximum value of n is 6 (C) there are exactly two possible values of n (D) none of these Let $\int \frac{dx}{x^{2008} + x} = \frac{1}{p} \ell n \left(\frac{x^q}{1 + x^r} \right) + C$ where p, q, r \in N and need not be distinct, then the value (p + q + r) 20. equals (A) 6024 (C) 6021 (D) 6020 (B) 6022 Let $f(x) = e^{e^{e^x}}$, denotes f'(0) = I, 21. $g(x) = x \ln x + x$, denotes g'(e) = m, $h(\mathbf{x}) = \frac{\mathrm{d}}{\mathrm{dx}}\int_{-\infty}^{\infty} t \,\mathrm{dt}$, denotes h'(1) = n, then the value of $\frac{lmn}{e^e}$, is (A) 3 (B) 3e (C) 3e^e (D) $e \cdot e^e$ 22. Consider two functions $f(x) = \sin x$ and g(x) = |f(x)|. **Statement-1**: The function h(x) = f(x) g(x) is not differentiable in $[0, 2\pi]$ **Statement-2**: f (x) is differentiable and g (x) is not differentiable in $[0, 2\pi]$ (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1. (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true. In a quadrilateral ABCD, \vec{AC} is the bisector of the $\left(\vec{AB}^{\ A}\vec{AD}\right)$ which is $\frac{2\pi}{3}$, $15\left|\vec{AC}\right| = 3\left|\vec{AB}\right| = 3$ 23.

 $5 \begin{vmatrix} \vec{A} \vec{D} \end{vmatrix} \text{ then } \cos\left(\vec{B} \vec{A} \quad \vec{C} \vec{D}\right) \text{ is :}$ $(A) - \frac{\sqrt{14}}{7\sqrt{2}} \qquad (B) - \frac{\sqrt{21}}{7\sqrt{3}} \qquad (C) \frac{2}{\sqrt{7}} \qquad (D) \frac{2\sqrt{7}}{14}$

- 24. If the vector $6\hat{i} 3\hat{j} 6\hat{k}$ is decomposed into vectors parallel and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ then the vectors are :
 - (A) $-(\hat{i}+\hat{j}+\hat{k}) \& 7\hat{i}-2\hat{j}-5\hat{k}$ (B) $-2(\hat{i}+\hat{j}+\hat{k}) \& 8\hat{i}-\hat{j}-4\hat{k}$ (C) $+2(\hat{i}+\hat{j}+\hat{k}) \& 4\hat{i}-5\hat{j}-8\hat{k}$ (D) none
- 25. The number of points, where the function f(x) = max (|tan x|, cos |x|) is non-differentiable in the interval $(-\pi, \pi)$, is (A) 4 (B) 6 (C) 3 (D) 2

26. If A (- 4, 0, 3); B (14, 2, -5) then which one of the following points lie on the bisector of the angle between \overrightarrow{OA} and \overrightarrow{OB} ('O' is the origin of reference)

27. Suppose $x_1 \& x_2$ are the point of maximum and the point of minimum respectively of the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$ respectively, then for the equality $x_1^2 = x_2$ to be true the value of 'a' must be :

(A) 0 (B) 2 (C) 1 (D) none
28. The value of the
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n^2} \sin \frac{\pi i^2}{n^2}$$
 is
(A) 1 (B) $\frac{1}{\pi}$ (C) $\frac{2}{\pi}$ (D) $\frac{1}{2\pi}$

29. Four coplanar forces are applied at a point O. Each of them is equal to k, & the angle between two consecutive forces equals 45°. Then the resultant has the magnitude equal to :

(A)
$$k\sqrt{2+2\sqrt{2}}$$
 (B) $k\sqrt{3+2\sqrt{2}}$ (C) $k\sqrt{4+2\sqrt{2}}$ (D) none

30. If $f(x) = x^4 + ax^3 + bx^2 + cx + d$ be polynomial with real coefficient and real roots. If |f(i)| = 1, where $i = \sqrt{-1}$, then a + b + c + d is equal to (A) - 1 (B) 1 (C) 0 (D) can not be determined

Answer Sheet

Student Name:		Batch : R	Date : 04/01/15
1. ABCD	2 ABCD	3. ABCD	4 ABCD
5. ABCD	« ABCD	7. ABCD	8 (ABCD)
9. ABCD	10. ABCD	11. ABCD	12 ABCD
13. ABCD	14. ABCD	15. ABCD	16. ABCD
17. ABCD	18. ABCD	19. ABCD	20. ABCD
21. ABCD	22. ABCD	23. ABCD	24. ABCD
25. ABCD	26. ABCD	27. ABCD	28. ABCD
29. ABCD	30. ABCD		

JEE Mains

Test Paper 08

Batch - R

Date 04/01/15

ANSWER WITH SOLUTION

				JEE N	MAINS		ANSWER KEY					
Q.	1	2	3	4	5	6	7	8	9	10	11	12
A.	В	А	D	В	А	А	В	С	А	С	В	AorC
Q.	13	14	15	16	17	18	19	20	21	22	23	24
A.	С	А	В	D	С	А	С	С	В	D	С	А
Q.	25	26	27	28	29	30						
A.	А	D	В	В	С	С						

SOLUTION

2.
$$I = \int_{\pi/4}^{\pi/2} 2\sin t \cos t dt + \int_{\pi/2}^{\pi} (-\sin t \cos t) + (\sin t \cos t) dt + \int_{\pi}^{5\pi/4} -2\sin t \cos t dt$$
$$= \int_{\pi/4}^{\pi/2} \sin 2t dt - \int_{\pi}^{5\pi/4} \sin 2t dt$$
these two integrals cancels \Rightarrow Zero]
3. $x = t + e^{at}; \quad y = -t + e^{at}$
$$\frac{dx}{dt} = 1 + ae^{at}; \frac{dy}{dt} = -1 + ae^{at}; \quad \frac{dy}{dx} = \frac{-1 + ae^{at}}{1 + ae^{at}}$$
at the point A, $y = 0$ and $\frac{dy}{dx} = 0$ for some $t = t_1$
$$\therefore \quad ae^{at_1} = 1 \dots (1);$$
also $0 = -t_1 + e^{at_1}; \quad \therefore \quad e^{at_1} = t_1 \dots (2), \quad putting this value in (1)$ we get, $at_1 = 1 \Rightarrow t_1 = \frac{1}{a}; \qquad now from (1) \quad ae = 1 \Rightarrow a = \frac{1}{e}$ hence $x_A = t_1 + e^{at_1} = e + e = 2e \Rightarrow A = (2e, 0)$ Ans.]
5. Area of $\Delta BCD = \frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BD}| = \frac{1}{2} |(b\hat{1} - c\hat{j}) \times (b\hat{1} - d\hat{k})|$
$$= \frac{1}{2} |b\hat{1}^2 + bc\hat{k} + dc\hat{1}|$$
$$= \frac{1}{2} \sqrt{b^2c^2 + c^2d^2 + d^2b^2} \qquad \dots (1)$$
A = $\frac{1}{2} \sqrt{200} = 5\sqrt{2}$ Ans.]

8.
$$f'(x) = -\frac{3}{(x+1)^4} - 3 + \cos x < 0$$

hence f (x) is always decreasing, Also as $x \to \infty$, f (x) $\to -\infty$ and as $x \to -\infty$, f (x) $\to +\infty$ hence one positive and one negative root Graph is as shown

- 11. consider $g(x) = (f(x) + f'(x))e^{-x}$ From the given information, g(a) = g(b). By Rolle's Theorem, there exists $c \in (a, b)$ such that g'(c) = 0. Here $g'(x) = (f''(x) - f(x))e^{-x}$ $g'(c) = 0 \Rightarrow f''(c) = f(c)$
- **12.** (i) (F)

$$y = \frac{1}{1+x^2} \Rightarrow \frac{dy}{dx} = -\frac{2x}{\left(1+x^2\right)^2} = 0 \text{ at } (0, 1) \Rightarrow \tan \psi = 0 \Rightarrow \psi = 0$$

 \therefore slope is not greatest. (iii) (T)

$$y = x + \frac{1}{x}$$
(1) $\Rightarrow \frac{dy}{dx} = 1 - \frac{1}{x^2}$ (2)

$$\frac{d^2 y}{dx^2} = \frac{2}{x^3}$$
(3)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow 1 - \frac{1}{x^2} = 0 \Rightarrow x = 1, x = -1 \Rightarrow \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_{x=1} > 0, \quad \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_{x=-1} < 0$$

 $\therefore \text{ y is max. if } x = -1 \text{ . y is min. at } x = 1$ $\Rightarrow (\text{max}). (y) = 1 - 1 = 0, \text{ min.}(y) = 1 + 1 = 2 \qquad \Rightarrow \text{max. value < min. value}]$

13. $A_0B = O$ if and only if $(I_n - A) (I_n - B) = I_n$. This implies that $I_n - A$ is non-singular. Conversely, if $I_n - A$ is non-singular and let C be its inverse and let $B = I_n - C$ then $C = I_n - B$. So $(I_n - A) (I_n - B) = I_n$

20.
$$I = \int \frac{dx}{x(x^{2007} + 1)} = \int \frac{x^{2007} + 1 - x^{2007}}{x(x^{2007} + 1)} dx = \int \left(\frac{1}{x} - \frac{x^{2006}}{1 + x^{2007}}\right) dx$$
$$= \ln x - \frac{1}{2007} \ln (1 + x^{2007}) = \frac{\ln x^{2007} - \ln(1 + x^{2007})}{2007} = \frac{1}{2007} \ln \left(\frac{x^{2007}}{1 + x^{2007}}\right) + C$$
$$p + q + r = 6021 \text{ Ans.}$$

21.
$$I = e \cdot e^e$$
; $m = 3$; $n = 1 \implies \frac{lmn}{e^e} = 3e$ Ans.]

22. f (x) = sin x is differentiable in $[0, 2\pi]$ g (x) = | sin x | is not differentiable at x = π . Let h (x) = f (x) g (x) = | sin x | sin x

$$\begin{array}{l} h'(\pi) = \lim_{h \to 0} \frac{|\sin(\pi - h)| \sin(\pi - h) - 0}{h} = \lim_{h \to 0} \frac{|\sin h| \sin h}{h} = 0 \\ \Rightarrow h(x) \text{ is differentiable at } x = \pi \\ \text{but } g(x) \text{ is not differentiable at } x = \pi \\ \text{but } g(x) \text{ is not differentiable at } x = \pi \\ \end{array} \\ \begin{array}{l} 26. \quad \overline{OA} = -4\hat{i} + 3\hat{k} : \overline{OB} = 14\hat{i} + 2\hat{j} - 5\hat{k} \\ \hat{a} = \frac{-4\hat{i} + 3\hat{k}}{5} : \hat{b} = \frac{14\hat{i} + 2\hat{j} - 5\hat{k}}{15} \\ \hline{a} = \frac{-4\hat{i} + 3\hat{k}}{5} : \hat{b} = \frac{14\hat{i} + 2\hat{j} - 5\hat{k}}{15} \\ \hline{r} = \frac{\lambda}{15} \Big[-12\hat{i} + 9\hat{j} + 14\hat{i} + 2\hat{j} - 5\hat{k} \Big] \\ \hline{r} = \frac{2\lambda}{15} \Big[\hat{i} + \hat{j} + 2\hat{k} \Big] \\ \hline{r} = \frac{2\lambda}{15} \Big[\hat{i} + \hat{j} + 2\hat{k} \Big] \\ \hline{r} = \frac{2\lambda}{15} \Big[\hat{i} + \hat{j} + 2\hat{k} \Big] \\ \hline{r} = \frac{2\lambda}{15} \Big[\hat{i} + \hat{j} + 2\hat{k} \Big] \\ \end{bmatrix} \\ \begin{array}{l} 28. \quad T_r = \frac{r}{n^2} \cdot \sin \frac{\pi r^2}{n^2} = \frac{1}{n} \cdot \frac{r}{n} \sin \pi \left(\frac{r}{n}\right)^2 \\ \qquad Sum = \sum T_r = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n \frac{r}{n} \sin \pi \left(\frac{r}{n}\right)^2 \\ \qquad Sum = \sum T_r = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n \frac{1}{n} \sin \pi \left(\frac{r}{n}\right)^2 \\ \qquad Sum = \sum T_r = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n \frac{1}{n} \sin \pi \left(\frac{r}{n}\right)^2 \\ = \int_0^1 x \sin \pi x^2 dx \\ put \pi x^2 = t \qquad \Rightarrow 2\pi x dx = dt \\ \qquad S = \frac{1}{2\pi} \int_0^{\pi} \sin t dt = \frac{1}{\pi} \text{ Ans.} \\ \begin{array}{l} 30. \quad \text{Let } f(x) = (x - x_1)(x - x_2)(x - x_3)(x - x_4) \\ \qquad \qquad |f(i)| = \sqrt{1 + x_1^2} \quad \sqrt{1 + x_2^2} \quad \sqrt{1 + x_3^2} \quad \sqrt{1 + x_4^2} = 1 \\ \Rightarrow x_1 = x_2 = x_3 = x_4 = 0 \qquad \Rightarrow \text{ all four roots are zero} \Rightarrow f(x) = x^4 \\ \therefore \quad a = b = c = d = 0 \Rightarrow \qquad a + b + c + d = 0 \Rightarrow (C) \end{array}$$