VKR Classes

VKR Sir

B.Tech., IIT DELHI
with you since 15 years

JEE Main

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch-R Marks : 120

SINGLE CORRECT CHOICE TYPE [4, -1]

1. If the complex number z satisfies the condition $|z| \geq 3$, then the least value of $\left|z+\frac{1}{z}\right|$ is equal to :
(A) $5 / 3$
(B) $8 / 3$
(C) $11 / 3$
(D) none of these
2. The integral, $\int_{\pi / 4}^{5 \pi / 4}(|\cos t| \sin t+|\sin t| \cos t) d t$ has the value equal to
(A) 0
(B) $1 / 2$
(C) $1 / \sqrt{2}$
(D) 1
3. A curve is represented parametrically by the equations $x=t+e^{a t}$ and $y=-t+e^{a t}$ when $t \in R$ and $a>0$. If the curve touches the axis of x at the point A, then the coordinates of the point A are
(A) $(1,0)$
(B) $(1 / \mathrm{e}, 0)$
(C) $(e, 0)$
(D) $(2 \mathrm{e}, 0)$
4. If $\mathrm{z}=\mathrm{x}+\mathrm{iy} \& \omega=\frac{1-\mathrm{iz}}{\mathrm{z}-\mathrm{i}}$ then $|\omega|=1$ implies that, in the complex plane :
(A) z lies on the imaginary axis
(B) z lies on the real axis
(C) z lies on the unit circle
(D) none
5. Let $A B C D$ be a tetrahedron such that the edges $A B, A C$ and $A D$ are mutually perpendicular. Let the area of triangles $A B C, A C D$ and $A D B$ be 3,4 and 5 sq. units respectively. Then the area of the triangle $B C D$, is
(A) $5 \sqrt{2}$
(B) 5
(C) $\frac{5}{\sqrt{2}}$
(D) $\frac{5}{2}$
6. Let C_{1} and C_{2} are concentric circles of radius 1 and $8 / 3$ respectively having centre at $(3,0)$ on the argand plane. If the complex number z satisfies the inequality, $\log _{1 / 3}\left(\frac{|z-3|^{2}+2}{11|z-3|-2}\right)>1$ then :
(A) z lies outside C_{1} but inside C_{2}
(B) z lies inside of both C_{1} and C_{2}
(C) z lies outside both of C_{1} and C_{2}
(D) none of these
7. The region represented by inequalities $\operatorname{Arg} Z \leq \frac{\pi}{3} ;|Z| \leq 2 ; \operatorname{lm}(z) \geq 1$ in the Argand diagram is given by
(A)

(B)

(C)

(D)

8. Number of roots of the function $f(x)=\frac{1}{(x+1)^{3}}-3 x+\sin x$ is
(A) 0
(B) 1
(C) 2
(D) more than 2
9. A beam of light is sent along the line $x-y=1$. Which after refracting from the x-axis enter the opposite side by turning through 30° towards the normal at the point of incidence on the x-axis. The equation of the refracted ray is
(A) $(2+\sqrt{3}) x-y=2+\sqrt{3}$
(B) $(2+\sqrt{2}) x-y=2+\sqrt{2}$
(C) $\sqrt{3} x-y=\sqrt{3}$
(D) None of these
10. If a, c, b are in G.P. then the line $a x+b y+c=0$:
(A) has a fixed direction
(B) always passes through a fixed point
(C) forms a traingle with the axes whose area is constant
(D) always cuts intercepts on the axes such that their sum is zero
11. Let f be a real valued function with derivatives upto order two for all $x \in R$. If $\ell n\left(\frac{f(b)+f^{\prime}(b)}{f(a)+f^{\prime}(a)}\right)=b-a$ for real number a \& b where $a<b$ then there is a number $c \in(a, b)$ for which
(A) $f^{\prime \prime}(c)=e^{f(c)}$
(B) $f^{\prime \prime}(\mathrm{c})=\mathrm{f}(\mathrm{c})$
(C) $\mathrm{f}^{\prime \prime}(\mathrm{c})=\operatorname{cf}(\mathrm{c})$
(D) None of these
12. Write the correct sequence of True \& False for the following:
(i) At the point $(0,1)$, the tangent line to $y=\frac{1}{1+x^{2}}$ has the greatest slope.
(ii) $f(x)=\int_{0}^{x} t(t-1)(t-2) d t$ takes on its manimum value at $x=0$, 2 .
(iii) The maximum value of $x+\frac{1}{x}$ is less than its minimum value.
(iv) The maximum value of $x^{1 / x}$ is $e^{1 / e},(x>0)$
(A) FFTT
(B) TTFT
(C) FTTT
(D) none
13. Let A and B be $n \times n$ matrices over the reals. If $A_{0} B=A+B-A B$ then $A_{0} B=B_{0} A=O$ if and only if :-
(A) A is non-singular
(B) B is non-singular
(C) $\left(I_{n}-A\right)$ is non-singular
(D) None of these
14. The complex number ω satisfying the equation $\omega^{3}=8 i$ and lying in the second quadrant on the complex plane is
(A) $-\sqrt{3}+i$
(B) $-\frac{\sqrt{3}}{2}+\frac{1}{2} i$
(C) $-2 \sqrt{3}+i$
(D) $-\sqrt{3}+2 i$
15. The number of points with integral coordinates lying in the interior of the quadilateral formed by lines $2 x$ $+y-2=0,4 x+5 y=20$ and the coordinate axes is -
(A) 5
(B) 6
(C) 7
(D) none of these
16. The true set of real values of λ for which the point P with co-ordiante $\left(\lambda, \lambda^{2}\right)$ does not lie inside the triangle formed by the lines, $x-y=0 ; x+y-2=0 \& x+3=0$ is -
(A) $(-\infty,-2]$
(B) $[0, \infty)$
(C) $[-2,0]$
(D) $(-\infty,-2] \cup[0, \infty)$
17. Number of imaginary complex numbers satisfying the equation, $z^{2}=\bar{z} 2^{1-|z|}$ is
(A) 0
(B) 1
(C) 2
(D) 3
18. Two opposite sides of rhombus are $x+y=1$ and $x+y=5$. If one vertex is $(2,-1)$ and the angle at the vertex is 45°, a vertex opposite to the given vertex is.
(A) $(6+2 \sqrt{2},-1-2 \sqrt{2})$
(B) $(6-2 \sqrt{2}, 1+2 \sqrt{2})$
(C) $(6-2 \sqrt{2}, 1-2 \sqrt{2})$
(D) none of these
19. If $f(x)=\operatorname{sgn}\left(\sin ^{2} x-\sin x-1\right)$ has exactly four points of discontinuity for $x \in(0, n \pi), n \in N$ then
(A) the minimum value of n is 5
(B) the maximum value of n is 6
(C) there are exactly two possible values of n
(D) none of these
20. Let $\int \frac{d x}{x^{2008}+x}=\frac{1}{p} \ell n\left(\frac{x^{q}}{1+x^{r}}\right)+C$ where $p, q, r \in N$ and need not be distinct, then the value $(p+q+r)$ equals
(A) 6024
(B) 6022
(C) 6021
(D) 6020
21. Let $f(x)=\mathrm{e}^{\mathrm{e}^{\mathrm{e}^{\mathrm{x}}}}$, denotes $f^{\prime}(0)=l$,

$$
g(\mathrm{x})=\mathrm{x} \ln \mathrm{x}+\mathrm{x} \text {, denotes } g^{\prime}(\mathrm{e})=m \text {, }
$$

$$
h(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}} \int_{0}^{\mathrm{x}} \mathrm{tdt} \text {, denotes } h^{\prime}(1)=n,
$$

then the value of $\frac{l m n}{\mathrm{e}^{\mathrm{e}}}$, is
(A) 3
(B) 3 e
(C) $3 e^{e}$
(D) $\mathrm{e} \cdot \mathrm{e}^{\mathrm{e}}$
22. Consider two functions $f(x)=\sin x$ and $g(x)=|f(x)|$.

Statement-1: The function $h(x)=f(x) g(x)$ is not differentiable in $[0,2 \pi]$
Statement-2 : $f(x)$ is differentiable and $g(x)$ is not differentiable in $[0,2 \pi]$
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D) Statement-1 is false, statement-2 is true.
23. In a quadrilateral $A B C D, \overrightarrow{A C}$ is the bisector of the $(\overrightarrow{A B} \stackrel{\wedge}{A D})$ which is $\frac{2 \pi}{3}, 15|\overrightarrow{A C}|=3|\overrightarrow{A B}|=$ $5|\overrightarrow{\mathrm{AD}}|$ then $\cos (\overrightarrow{\mathrm{BA}} \wedge \overrightarrow{\mathrm{CD}})$ is :
(A) $-\frac{\sqrt{14}}{7 \sqrt{2}}$
(B) $-\frac{\sqrt{21}}{7 \sqrt{3}}$
(C) $\frac{2}{\sqrt{7}}$
(D) $\frac{2 \sqrt{7}}{14}$
24. If the vector $6 \hat{i}-3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$ is decomposed into vectors parallel and perpendicular to the vector $\hat{i}+\hat{j}+\hat{k}$ then the vectors are :
(A) $-(\hat{i}+\hat{j}+\hat{k}) \& 7 \hat{i}-2 \hat{j}-5 \hat{k}$
(B) $-2(\hat{i}+\hat{j}+\hat{k}) \& 8 \hat{i}-\hat{j}-4 \hat{k}$
(C) $+2(\hat{i}+\hat{j}+\hat{k}) \& 4 \hat{i}-5 \hat{j}-8 \hat{k}$
(D) none
25. The number of points, where the function $f(x)=\max (|\tan x|, \cos |x|)$ is non-differentiable in the interval $(-\pi, \pi)$, is
(A) 4
(B) 6
(C) 3
(D) 2
26. If $\mathrm{A}(-4,0,3)$; $\mathrm{B}(14,2,-5)$ then which one of the following points lie on the bisector of the angle between $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ (' O ' is the origin of reference)
(A) $(2,1,-1)$
(B) $(2,11,5)$
(C) $(10,2,-2)$
(D) $(1,1,2)$
27. Suppose $x_{1} \& x_{2}$ are the point of maximum and the point of minimum respectively of the function $f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$ respectively, then for the equality $x_{1}{ }^{2}=x_{2}$ to be true the value of 'a' must be :
(A) 0
(B) 2
(C) 1
(D) none
28. The value of the $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{i}{\mathrm{n}^{2}} \sin \frac{\pi i^{2}}{\mathrm{n}^{2}}$ is
(A) 1
(B) $\frac{1}{\pi}$
(C) $\frac{2}{\pi}$
(D) $\frac{1}{2 \pi}$
29. Four coplanar forces are applied at a point O. Each of them is equal to $k, \&$ the angle between two consecutive forces equals 45°. Then the resultant has the magnitude equal to :
(A) $\mathrm{k} \sqrt{2+2 \sqrt{2}}$
(B) $\mathrm{k} \sqrt{3+2 \sqrt{2}}$
(C) $\mathrm{k} \sqrt{4+2 \sqrt{2}}$
(D) none
30. If $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ be polynomial with real coefficient and real roots. If $|f(i)|=1$, where $i=\sqrt{-1}$, then $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ is equal to
(A) -1
(B) 1
(C) 0
(D) can not be determined

Answer Sheet

Student Name:
Batch: R Date : 04/01/15

1. (A) (B) (D)
2. (A) (B) (C)
3. (A) (B) (D)
4. (A) (B) (D)
2 (A) (B) (D)
5. (A) B (D)
6. (A) (B) (D)
7. (A)(B)(D)
8. (A) (B) (D)
9. (A) (B) (D)
10. (A) (B) (D)
11. (A)(B)(D)
12. (A) (B) (D)
13. (A) (B) (D)
12(A)(B)(D)
16.(A) (B) (D)
14. (A) (B) (D)
15. (A) (B) (D)
16. (A) (B) (D)
17. (A) (B) (D)
18. (A) (B) (D)
19. (A) (B) (D)
20. (A) (B) (D)
21. (A) (B) (D)
22. (A) (B) (D)
23. (A) (B) (D)
27.(A) (B) (D)
28.(A) (B) (D)
24. (A) (B)(C) (D)

ANSWER WITH SOLUTION

SOLUTION

2. $I=\int_{\pi / 4}^{\pi / 2} 2 \sin t \cos t d t+\int_{\pi / 2}^{\pi} \underbrace{(-\sin t \cos t)}_{\text {zero }}+(\sin t \cos t) d t+\int_{\pi}^{5 \pi / 4}-2 \sin t \cos t d t$

$$
=\int_{\pi / 4}^{\pi / 2} \sin 2 \mathrm{tdt}-\int_{\pi}^{5 \pi / 4} \sin 2 \mathrm{tdt}
$$

these two integrals cancels \Rightarrow Zero]
3. $x=t+e^{a t} ; \quad y=-t+e^{a t}$
$\frac{d x}{d t}=1+a e^{a t} ; \frac{d y}{d t}=-1+a e^{a t} ; \quad \frac{d y}{d x}=\frac{-1+e^{a t}}{1+\mathrm{ae}^{a t}}$
at the point $A, y=0$ and $\frac{d y}{d x}=0$ for some $t=t_{1}$
$\therefore \quad \mathrm{ae}^{\mathrm{at}_{1}}=1$....(1);
also $0=-t_{1}+e^{a t_{1}} ; \quad \therefore \quad e^{a_{1}}=t_{1} \quad \ldots . .(2), \quad$ putting this value in (1)
we get, $\quad a t_{1}=1 \Rightarrow t_{1}=\frac{1}{a} ; \quad$ now from (1) $a e=1 \quad \Rightarrow a=\frac{1}{e}$
hence $\quad x_{A}=t_{1}+e^{a t_{1}}=e+e=2 e \Rightarrow A \equiv(2 e, 0)$ Ans.]
5. Area of $\Delta \mathrm{BCD}=\frac{1}{2}|\overrightarrow{\mathrm{BC}} \times \overrightarrow{\mathrm{BD}}|=\frac{1}{2}|(\mathrm{~b} \hat{\mathrm{i}}-\mathrm{c} \hat{\mathrm{j}}) \times(\mathrm{b} \hat{\mathrm{i}}-\mathrm{d} \hat{\mathrm{k}})|$

$$
\begin{align*}
& =\frac{1}{2}|b d \hat{\mathrm{j}}+\mathrm{bc} \hat{\mathrm{k}}+\mathrm{dc} \hat{\mathrm{i}}| \\
& =\frac{1}{2} \sqrt{\mathrm{~b}^{2} \mathrm{c}^{2}+\mathrm{c}^{2} \mathrm{~d}^{2}+\mathrm{d}^{2} \mathrm{~b}^{2}} \tag{1}
\end{align*}
$$

now $6=\mathrm{bc} ; 8=\mathrm{cd} ; 10=\mathrm{bd}$ $b^{2} c^{2}+c^{2} d^{2}+d^{2} b^{2}=200$
substituting the value in (1)

$\mathrm{A}=\frac{1}{2} \sqrt{200}=5 \sqrt{2}$ Ans.]
8. $f^{\prime}(x)=-\frac{3}{(x+1)^{4}}-3+\cos x<0$
hence $f(x)$ is always decreasing, Also as $x \rightarrow \infty, f(x) \rightarrow-\infty$ and as $x \rightarrow-\infty, f(x) \rightarrow+\infty$ hence one positive and one negative root
Graph is as shown

11. consider $g(x)=\left(f(x)+f^{\prime}(x)\right) e^{-x}$

From the given information, $g(a)=g(b)$.
By Rolle's Theorem, there exists $c \in(a, b)$
such that $\mathrm{g}^{\prime}(\mathrm{c})=0$.
Here $g^{\prime}(x)=\left(f^{\prime \prime}(x)-f(x)\right) e^{-x}$
$\mathrm{g}^{\prime}(\mathrm{c})=0 \Rightarrow \mathrm{f}^{\prime \prime}(\mathrm{c})=\mathrm{f}(\mathrm{c})$
12. (i) (F)
$y=\frac{1}{1+x^{2}} \Rightarrow \frac{d y}{d x}=-\frac{2 x}{\left(1+x^{2}\right)^{2}}=0$ at $(0,1) \Rightarrow \tan \Psi=0 \Rightarrow \Psi=0$
\therefore slope is not greatest.
(iii) (T)
$y=x+\frac{1}{x} \ldots \ldots \ldots$.(1) $\Rightarrow \frac{d y}{d x}=1-\frac{1}{x^{2}}$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{2}{\mathrm{x}^{3}}$
$\frac{d y}{d x}=0 \Rightarrow 1-\frac{1}{x^{2}}=0 \Rightarrow x=1, x=-1 \Rightarrow\left(\frac{d^{2} y}{d^{2}}\right)_{x=1}>0, \quad\left(\frac{d^{2} y}{d x^{2}}\right)_{x=-1}<0$
$\therefore \mathrm{y}$ is max. if $\mathrm{x}=-1 . \mathrm{y}$ is \min. at $\mathrm{x}=1$
$\Rightarrow(\max) .(y)=1-1=0, \min .(y)=1+1=2 \quad \Rightarrow \max$. value $<\min$. value
13. $\quad A_{0} B=O$ if and only if $\left(I_{n}-A\right)\left(I_{n}-B\right)=I_{n}$. This implies that $I_{n}-A$ is non-singular. Conversly, if $I_{n}-A$ is nonsingular and let C be its inverse and let $B=I_{n}-C$ then $C=I_{n}-B$. So $\left(I_{n}-A\right)\left(I_{n}-B\right)=I_{n}$
20. $\quad I=\int \frac{d x}{x\left(x^{2007}+1\right)}=\int \frac{x^{2007}+1-x^{2007}}{x\left(x^{2007}+1\right)} d x=\int\left(\frac{1}{x}-\frac{x^{2006}}{1+x^{2007}}\right) d x$
$=\ln x-\frac{1}{2007} \ln \left(1+x^{2007}\right)=\frac{\ell n x^{2007}-\ln \left(1+x^{2007}\right)}{2007}=\frac{1}{2007} \ln \left(\frac{x^{2007}}{1+x^{2007}}\right)+C$
$p+q+r=6021$ Ans.
21. $\mathrm{I}=\mathrm{e} \cdot \mathrm{e}^{\mathrm{e}} ; \mathrm{m}=3 ; \mathrm{n}=1 \Rightarrow \frac{l m n}{\mathrm{e}^{\mathrm{e}}}=3 \mathrm{e}$ Ans.]
22. $f(x)=\sin x$ is differentiable in $[0,2 \pi]$
$g(x)=|\sin x|$ is not differentiable at $x=\pi$.
Let $h(x)=f(x) g(x)=|\sin x| \sin x$
$h^{\prime}(\pi)=\operatorname{Lim}_{h \rightarrow 0} \frac{|\sin (\pi-h)| \sin (\pi-h)-0}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{|\sinh | \sin h}{h}=0$
$\Rightarrow \quad h(x)$ is differentiable at $x=\pi$
but $g(x)$ is not differentiable at $x=\pi$]
26. $\overrightarrow{\mathrm{OA}}=-4 \hat{\mathrm{i}}+3 \hat{\mathrm{k}} ; \overrightarrow{\mathrm{OB}}=14 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
$\hat{a}=\frac{-4 \hat{i}+3 \hat{k}}{5} ; \hat{b}=\frac{14 \hat{i}+2 \hat{j}-5 \hat{k}}{15}$
$\overrightarrow{\mathrm{r}}=\frac{\lambda}{15}[-12 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+14 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}]$
$\overrightarrow{\mathrm{r}}=\frac{\lambda}{15}[2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}]$
$\overrightarrow{\mathrm{r}}=\frac{2 \lambda}{15}[\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}]$
28. $\quad \mathrm{T}_{\mathrm{r}}=\frac{\mathrm{r}}{\mathrm{n}^{2}} \cdot \sin \frac{\pi \mathrm{r}^{2}}{\mathrm{n}^{2}}=\frac{1}{\mathrm{n}} \cdot \frac{\mathrm{r}}{\mathrm{n}} \sin \pi\left(\frac{\mathrm{r}}{\mathrm{n}}\right)^{2}$

Sum $=\sum T_{r}=\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r}{n} \sin \pi\left(\frac{r}{n}\right)^{2}=\int_{0}^{1} x \sin \pi x^{2} d x$
put $\pi x^{2}=t \quad \Rightarrow 2 \pi x d x=d t$
$S=\frac{1}{2 \pi} \int_{0}^{\pi} \sin t d t=\frac{1}{\pi}$ Ans.
30. Let $f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)$

$$
\begin{aligned}
& |f(i)|=\sqrt{1+x_{1}^{2}} \sqrt{1+x_{2}^{2}} \sqrt{1+\mathrm{x}_{3}^{2}} \sqrt{1+\mathrm{x}_{4}^{2}}=1 \\
\Rightarrow & \mathrm{x}_{1}=\mathrm{x}_{2}=\mathrm{x}_{3}=\mathrm{x}_{4}=0 \quad \Rightarrow \quad \text { all four roots are zero } \quad \Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}^{4} \\
\therefore & a=\mathrm{b}=\mathrm{c}=\mathrm{d}=0 \Rightarrow \quad \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=0 \Rightarrow \quad \text { (C) }]
\end{aligned}
$$

