VKR Classes

VKR Sir
B.Tech., IIT DELHI
with you since 15 years

JEE Advanced

Time : 2 hr .
 Test Paper 12
 Date 25/01/15 Batch - P
 Marks : 120

SINGLE CORRECT CHOICE TYPE [3, -1]

1. The domain of definition of the function $f(x)=\log \left(\sqrt{10 \cdot 3^{x-2}-9^{x-1}-1}\right)+\sqrt{\cos ^{-1}(1-x)}$ is
(A) $[0,1]$
(B) $[1,2]$
(C) $(0,2)$
(D) $(0,1)$
2. If $f(x)$ is even, periodic function defined for all $x \in R$ and has period 1 then
(A) $f\left(x+\frac{1}{2}\right)=f(x)$
(B) $f\left(\frac{1}{3}+x\right)=f\left(\frac{2}{3}-x\right)$
(C) $f(x+1)=f(2 x+1)$
(D) $f(0)$ can not be zero
3. The line $(k+1)^{2} x+k y-2 k^{2}-2=0$ passes through a point regardless of the value k. Which of the following is the line with slope 2 passing through the point?
(A) $y=2 x-8$
(B) $y=2 x-5$
(C) $y=2 x-4$
(D) $y=2 x+8$
4. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-zero real numbers, then the minimum value of the expression
$\left(\frac{\left(a^{4}+3 a^{2}+1\right)\left(b^{4}+5 b^{2}+1\right)\left(c^{4}+7 c^{2}+1\right)}{a^{2} b^{2} c^{2}}\right)$ equals
(A) 125
(B) 315
(C) 343
(D) 729
5. The number k is such that $\tan \{(\arctan (2)+\arctan (20 k)\}=k$. The sum of all possible values of k is
(A) $-\frac{19}{40}$
(B) $-\frac{21}{40}$
(C) 0
(D) $\frac{1}{5}$
6. A class has three teachers, Mr. P, Ms. Q and Mrs. R and six students A,B,C,D,E,F. Number of ways in which they can be seated in a line of 9 chairs, if between any two teachers there are exactly two students, is $k(6!)$ then the value of k is
(A) 18
(B) 12
(C) 24
(D) 6
7. The number of ways in which a mixed double tennis game can be arranged from amongst 9 married couple if no husband \& wife plays in the same game is :
(A) 756
(B) 1512
(C) 3024
(D) 4536
8. If $\sin ^{4} x+\cos ^{4} y+2=4 \sin x \cos y$, and $0 \leq x, y \leq \frac{\pi}{2}$ then $\sin x+\cos y$ is equal to
(A) -2
(B) 0
(C) 2
(D) none of these

Comprehension \# 1

Consider the family of circles $x^{2}+y^{2}-2 x-2 \lambda y-8=0$ passing through two fixed points A and B. Also $S=0$ is a circle of this family, the tangent to which at A and B intersect on the line $x+2 y+5=0$.
9. The distance between the points A and B, is
(A) 4
(B) $4 \sqrt{2}$
(C) 6
(D) 8
10. If the circle $x^{2}+y^{2}-10 x+2 y+c=0$ is orthogonal to $S=0$, then the value of c equals
(A) 8
(B) 9
(C) 10
(D) 12

Comprehension \# 2

Let $P(x)$ be a polynomial such that $P(1)=1$ and $\frac{P(2 x)}{P(x+1)}=8-\frac{56}{x+7}$ for all real x for which both sides are defined.
11. The value of $P(-1)$ is
(A) $\frac{2}{7}$
(B) $-\frac{4}{21}$
(C) $-\frac{5}{21}$
(D) $-\frac{11}{21}$
12. The number of real roots of $P(x)=0$ is
(A) 5
(B) 3
(C) 2
(D) None of these

Comprehension \# 3

In a sequence of $(4 n+1)$ terms the first $(2 n+1)$ terms are in AP whose common difference is 2 , and the last $(2 n+1)$ terms are in GP whose common ratio 0.5 . If the middle terms of the AP and GP are equal then
13. The middle term of the sequence is
(A) $\frac{n \cdot 2^{n+1}}{2^{n}-1}$
(B) $\frac{n \cdot 2^{n+1}}{2^{2 n}-1}$
(C) $n .2^{n}$
(D) None of these
14. The middle term of the GP is
(A) $\frac{2^{n}}{2^{2}-1}$
(B) $\frac{n .2^{n}}{2^{2}-1}$
(C) $\frac{n}{2^{n}-1}$
(D) $\frac{2 n}{2^{n}-1}$

Comprehension \# 4

Consider the function $f: y=f(x)=\left\{\begin{array}{c}\frac{x}{3}-\frac{10}{3} \text { if } x \in[-5,-2) \\ 2 x \text { if } x \in[-2,2] \\ \frac{x}{3}+\frac{10}{3} \text { if } x \in(2,5]\end{array}\right.$
15. Which one most resembles the graph of f ?
(a)

(b)

(c)

(d)

(A) a
(B) b
(C) c
(D) d
16. Which one could not possibly be a possible value for $\underbrace{(\mathrm{fo} \ldots \text { of })}_{\text {n compositions }}$ (a), where n is a positive integer and $\mathrm{a} \in[-5,5]$?
(A) 0
(B) -5
(C) 5
(D) 6
17. If the equation $\sin ^{-1}\left(x^{2}+x+1\right)+\cos ^{-1}(a x+1)=\frac{\pi}{2}$ has exactly two solutions then a cannot have the value
(A) -1
(B) 0
(C) 1
(D) 2
18. The equation $\left(\frac{x}{x+1}\right)^{2}+\left(\frac{x}{x-1}\right)^{2}=a(a-1)$ has
(A) four real roots if a>3
(B) has two realroots if $1<a<2$
(C) has no real roots if a <-1
(D) has four real roots for all $\mathrm{a}<-1$
19. Let a, b, c be the roots of $x^{3}-9 x^{2}+11-1=0$ and let $s=\sqrt{a}+\sqrt{b}+\sqrt{c}$ and $t=\sqrt{a b}+\sqrt{b c}+\sqrt{c a}$, then
(A) $\mathrm{t}^{2}=11+2 \mathrm{~s}$
(B) $s^{4}=125+36 t+8 s$
(C) $s^{4}-18 s^{2}-8 s=-37$
(D) $s^{4}-18 s^{2}+8 s=37$
20. Let $f:\left[-\frac{\pi}{3}, \frac{2 \pi}{3}\right] \rightarrow[0,4]$ be a function defined as $f(x)=\sqrt{3} \sin x-\cos x+2$. then $f^{-1}(x)$ is given by
(A) $\sin ^{-1}\left(\frac{x-2}{2}\right)-\frac{\pi}{6}$
(B) $\sin ^{-1}\left(\frac{x-2}{2}\right)+\frac{\pi}{6}$
(C) $\frac{2 \pi}{3}-\cos ^{-1}\left(\frac{x-2}{2}\right)$
(D) None of these
21. If $f(x)=\sin (\{x\}+\sin a x)$ is periodic with period ' 1 ' then 'a' may be equal to (where $\{x\}$ denotes fractional part of x):
(A) 0
(B) 2π
(C) 4π
(D) π
22. Let $f(x)=x^{3}-2 x, g(x)=x^{3}-x|x|, h(x)=3 x^{2}-|x|+6, k(x)=x^{4}-2 x+|x+1|$. Which of the following functions is either odd or even?
(A) kog
(B) koh
(C) fog
(D) fohog
23. If $f: R \rightarrow R$ is defined as $f(x)=e^{|x|}-e^{-x}$, then the correct statement(s) is/are
$(A) f$ is one - one onto function
(B) f is many one into function
(C) range of f is $[0, \infty)$
(D) range of f is $(-\infty, \infty)$
24. In a triangle $A B C$, altitude from its vertex meet the opposite sides in D, E and F. Then the perimeter of the triangle $D E F$, is
(A) $\frac{a b c}{4 R^{2}}$
(B) $\frac{2 \Delta}{R}$
(C) $\frac{R(a+b+c)}{r}$
(D) $\frac{2 \mathrm{rs}}{\mathrm{R}}$
25. Consider the circle $x^{2}+y^{2}-8 x-18 y+93=0$ with centre ' C ' and point $P(2,5)$ outside it. From the point P, a pair of tangents $P Q$ and $P R$ are drawn to the circle with S as the midpoint of $Q R$. The line joining P to C intersects the given circle at A and B. Which of the following hold(s) good?
(A) $C P$ is the arithmetic mean of $A P$ and $B P$.
(B) PR is the geometric mean of PS and PC.
(C) PS is the harmonic mean of PAand PB.
(D) The angle between the two tangents from P is $\tan ^{-1}\left(\frac{3}{4}\right)$.
26. if $\mathrm{a}=\underbrace{111 \ldots \ldots .1}_{55 \text { times }}, \mathrm{b}=1+10+10^{2}+10^{3}+10^{4}$ and $\mathrm{c}=1+10^{5}+10^{10}+\ldots \ldots \ldots+10^{50}$ then
(A) $b, \frac{a}{2}, c$ are in A.P.
(B) b, \sqrt{a}, c are in G.P.
(C) a is a prime number
(D) a is a composite number
where Δ is the area of the triangle ABC and all other symbols have their usual meaning.

INTEGER ANSWER TYPE [3, 0]

27. The sum of the squares of all the solution(s) of the equation, $2 \sin ^{-1}(x+2)=\cos ^{-1}(x+3)$ is
28. Suppose the domain of the function $y=f(x)$ is $-1 \leq x \leq 4$ and the range is $1 \leq y \leq 10$. Let $g(x)=4-3 f(x-2)$. If the domain of $g(x)$ is $a \leq x \leq b$ and the range of $g(x)$ is $c \leq y \leq d$ then the value of $(a+b+d)$ is
29. Let $A B C$ and $A B C^{\prime}$ be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is
30. If $f(\theta)=\frac{1-\sin 2 \theta+\cos 2 \theta}{2 \cos 2 \theta}$ then the reciprocal of the value of $f\left(11^{\circ}\right) \cdot f\left(34^{\circ}\right)$ equals
31. The least integral value of k for which $(k-2) x^{2}+8 x+k+4>\sin ^{-1}(\sin 12)+\cos ^{-1}(\cos 12)$ for all $x \in R$, is
32. The number of solutions of the equation $|[x]-2 x|=4$, where $[x]$ is the greatest integer $\leq x$, is equal to2
33. If the equation $\sec \theta+\operatorname{cosec} \theta=c$ has two real roots between 0 and 2π, then the least integer which c^{2} cannot exceed is equal to
34. If the sum to first n terms of a series, the $r^{\text {th }}$ term of which is given by $(2 r+1) 2^{r}$ can be expressed as $R\left(n \cdot 2^{n}\right)+S \cdot 2^{n}+T$, then find the value of $(R+S+T)$.
35. Let α, β and γ be three distinct real roots of the equation $x(3 x+2)^{2}+2=(a+12+9 x) x^{2}-b x+c$ where $a, b, c \in R$. If every solution of the inequality $(x-a)^{2}(4 x+b)(x-c)<0$ is also solution of the inequality $3 x^{2}+p x+p^{2}+6 p<0$ then find number of integral values of ' p '.
36. The number of solutions of the equation $\log ^{2}(4-x)+\log (4-x) \cdot \log \left(x+\frac{1}{2}\right)-2 \log ^{2}\left(x+\frac{1}{2}\right)=0$ is

MATRIX MATCH TYPE [3, -1]

37. Match the following

Column-1
(A)

In a triangle $A B C, a=7, b=8, c=9, B D$ is median, $B E$ is aititude, then ED is equal to
(B) If $\frac{3}{5}$ th of all the 'three element subsets' of $A=\left\{a_{1}, a_{2}, \ldots \ldots \ldots . a_{n}\right\}$ contain the element a_{n}, then n is equal to
(C) In a triangle $A B C, \sin A \cos B=\frac{1}{4}$ and $3 \tan A=\tan B$, then $\cot ^{2} A$ si equal to
(D) Out fo 10 pens 4 are identical of black colour, some are identical of white colout and rest are diferent. If they can be arranged in 6300 ways, then the number of white colout pens is equal to
38.

Column I

Column II
(A) The minimum value of $|x-p|+|x-15|+|x-p-15|$
(P) 25
for x is the range $p \leq x \leq 15$, where $0<p<15$.
(B) The number of 4 digit number with first digit 1 having
(Q) 15 exactly two identical digits is 36 k where k is
(C) The function $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ satisfies $\mathrm{f}(\mathrm{x})=\mathrm{n}-3$ for $\mathrm{n}>999$ and $f(n)=f(f(n+5))$ for $n<100$. If $f(84)=k$ then the sum of the digit of k is
(D) The number of rational terms in $(\sqrt[8]{5}+\sqrt[6]{2})^{100}$
(S) 4
39.
(A) If $\{(1,1),(4,2)$ and $R(x, 0)$ be three point such that $P R+R Q$ is minimum, then x is equal to
(B) The area bounded by the curves $\max \{|x|,|y|\}=1$ is
(Q) 2 equal to
(C) The number of circles that touch all the three lines
(R) 3
$2 x-y=5, x+y=3$ and $4 x-2 y=7$ is equal to
(D) If a line segment between the lines
$3 x+2 y-15=0$ and $x+2 y-4=0$
is bisected by the point $(3,1)$, then negative reciprocal of the slope of line containing the segment is
40.

Column-I
Column-II
(A) If three unequal numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are A.P. and $\mathrm{b}-\mathrm{c}, \mathrm{c}-\mathrm{b}$
(P) $\frac{1}{3}$
$a-b$ are in G.P., then $\frac{a^{3}+b^{3}+c^{3}}{3 a b c}$ is equal to
(B) Let x be the arithmetic mean and y, z be two goemetric means between any two positive numbers, then
$\frac{y^{3}+z^{3}}{x y z}$ is equal to
(C) If a, b, c be three positive number which form three
(R) 2
successive terms of a G.P. and $c>4 b-3 a$, then the common ratio of the G.P. can be equal to
(D) $\quad \lim _{n \rightarrow \infty} \tan \left\{\sum_{r=1}^{n} \tan ^{-1}\left(\frac{1}{2 r^{2}}\right)\right\}$ is qual to
(Q) 1
(S) 3

Answer Sheet
Student Name: \qquad Batch: P
Date : 25/01/15

1. (A)(B)(C)(D)	2 (4)(B)C(1)	3. (4)(B)(C)(1)	4. (A)BC(C)
5. (A)BC(C)(D)		7. (A)(B)(C)(1)	\therefore - (A) (B)C(1)
9. (A)(B)(C)(D)	10. (A)(B)(C)(1)	11.(A)(B)(C)	12(A)(B)(C)(1)
13 (A)(B)(C)(D)	14. (A)(B)(C)(1)	15. (A)(B)(C)(1)	16.(A)(B)(C)(D)
17. (A)(B)(C)(D)	18.(A)(B)(C)(1)	19.(A)(B)(C)(1)	20.(A)(B)(C)(D)
21. (A)(B)(C)(1)	22.(A)(B)(C)(D)	23.(A)(B)(C)(D)	24.(A)(B)(C)(D)
25.(A)(B)(C)(D)	26.(A)(B)(C)(1)		
27. (0) (1) (2) (3) (4)(5) (6) (7) (8) (9)		28. (1) (1) (2) (3) (4) (5) (6) (7) (8) (9)	
29. (0) (1) (2) (3) (4) (5) (6) (7) 88 (9)		30. (1) (1) (2) (3) (4) (5) (6) (7) (8) (9)	
31. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)		32. (1) (1) (2) (3) (4) (5) (6) (7) (8) (9)	
33. (1) (1) (2) (3) (4) (5) (6) (7) (8) (9)		34. (1) (1) (2) (3) (4) (5) (6) (7) (8) (9)	
35. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)		36. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)	
37. A B C D	38. A B C D	A B C D	A B
$\bigcirc \bigcirc$	$\bigcirc{ }^{\text {P ¢ ¢ ¢ ¢ }}$	(P) P- ¢ ¢	$\bigcirc \bigcirc \bigcirc \bigcirc$
@ © © ©	© © © ©	© © © ©	© © © ©
© $\square_{\text {® }}^{(8) 8}$	®®®®®	© $\square_{\text {® }}^{(8)}$	
(5) (3) (3) (3)	(5) (5) (5) (5)	(5) (5) (3) (5)	(5) (5) (5) (5)

ANSWER WITH SOLUTION

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10	11	12	
A.	C	B	A	B	A	A	B	C	C	D	C	B	
Q.	13	14	15	16	17	18	19	20	21	22	23	24	
A.	A	D	A	D	ACD	ABD	ABC	BC	ABC	BCD	BC	BD	
Q.	25	26	27	28	29	30	31	32	33	34	35	36	
A.	ABC	BD	4	8	4	2	5	4	8	4	5	3	
Q.	37.						38.						
A.	(A) - (P), $\mathrm{B}-(\mathrm{S}),(\mathrm{C})-(\mathrm{Q}),(\mathrm{D})-(\mathrm{R})$						(A) - (Q), B - (R), (C) - (P), (D) - (S)						
Q.	39.						40.						
A.	(A) - (Q), B-(S), (C) - (Q), (D) - (P)						(A) - (R), $\mathrm{B}-(\mathrm{R}),(\mathrm{C})-(\mathrm{P}, \mathrm{R}),(\mathrm{D})-(\mathrm{Q})$						

3. $(k+1)^{2} x+k y=2 k^{2}+2$

SOLUTION

$\left(k^{2}+2 k+1\right) x+k y=2 k^{2}+2$
$k^{2}(x-2)+k(2 x+y)+(x-2)=0$
$\left(k^{2}+1\right)(x-2)+k(2 x+y)=0$
$(2 x+y)+(k+1 / k)(x-2)=0$
Hence line passes through fixed point, $x=2$ and $y=-4$]
4. We have $\left(\frac{a^{4}+3 a^{2}+1}{a^{2}}\right)\left(\frac{b^{4}+5 b^{2}+1}{b^{2}}\right)\left(\frac{c^{4}+7 c^{2}+1}{c^{2}}\right)$

$$
=\left(a^{2}+\frac{1}{a^{2}}+3\right)\left(b^{2}+\frac{1}{b^{2}}+5\right)\left(c^{2}+\frac{1}{c^{2}}+7\right)=\left(\left(a-\frac{1}{a}\right)^{2}+5\right)\left(\left(b-\frac{1}{b}\right)^{2}+7\right)\left(\left(c-\frac{1}{c}\right)^{2}+9\right)
$$

Clearly minimum value occurs when $\mathrm{a}=\mathrm{b}=1=\mathrm{c}$ and minimum value $=5 \times 7 \times 9=315$]
6.
(i) T S S T S S T S S
(ii) S T S S T S S T S
(iii) S S T S S T S S T

Hence $3 \cdot(3!) 6!=(18) 6!\Rightarrow \quad k=18$ Ans.]
7. $\quad{ }^{9} \mathrm{C}_{2} \cdot{ }^{7} \mathrm{C}_{2} \cdot 2!=1512$]
24. sides of pedal Δ are a $\cos A, b \cos B, c \cos C$
$P=a \cos A+b \cos B+c \cos C$

$$
\begin{aligned}
& =R\left(\sum \sin 2 A\right)=4 R \sin A \cdot \sin B \cdot \sin C=\frac{4 R a b c}{8 R^{3}}=\frac{\mathrm{abc}}{2 R^{2}}=\frac{\mathrm{abc} \cdot 4 \Delta}{2 \mathrm{Rabc}}=\frac{2 \Delta}{\mathrm{R}} \\
& \Rightarrow \quad(B) \\
& \left.=\frac{2 \mathrm{rs}}{\mathrm{R}} \Rightarrow \quad \text { (D) }\right]
\end{aligned}
$$

27. 4

$$
\begin{array}{ll}
\text { Let } & \sin ^{-1}(x+2)=\alpha \quad \Rightarrow \quad x+2=\sin \alpha \\
\therefore & 2 \alpha=\cos ^{-1}(x+3) \\
& \cos 2 \alpha=x+3=(x+2)+1=1+\sin \alpha \\
& 1-2 \sin ^{2} \alpha=1+\sin \alpha \\
& \sin \alpha(1+2 \sin \alpha)=0
\end{array}
$$

$$
\Rightarrow \quad \sin \alpha=0 \text { or } \sin \alpha=-1 / 2
$$

$$
\therefore \quad x=-2 \quad \text { or } \quad x=-2.5 \text { (rejected) }
$$

$$
\left.\therefore \quad x^{2}=6.25\right]
$$

28. 8
for domain of $g(x) \quad-1 \leq x-2 \leq 4 \quad \Rightarrow \quad 1 \leq x \leq 6$
hence $\quad a=1$ and $b=6$
for range, $1 \leq y \leq 10$
$\Rightarrow \quad 1 \leq f(x) \leq 10$
$\Rightarrow \quad 1 \leq f(x-2) \leq 10$
$\Rightarrow \quad 3 \leq 3 f(x-2) \leq 30$
$\therefore \quad-26 \leq 4-3 f(x-2) \leq 1$
hence $\quad c=-26$ and $d=1$
29. [Ans. 4]

Apply cosine rule in $\triangle \mathrm{ABC} \quad\left(\mathrm{x} \rightarrow \mathrm{x}_{1}\right.$ or $\left.\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \quad \cos 30^{\circ}=\frac{16+\mathrm{x}^{2}-8}{2 \times 4 \times \mathrm{x}}=\frac{\sqrt{3}}{2} \\
& \Rightarrow \quad \mathrm{x}^{2}+8-4 \sqrt{3} \mathrm{x}=0 \\
& \mathrm{x}=\frac{4 \sqrt{3} \pm \sqrt{48-32}}{2}=\frac{4 \sqrt{3} \pm 4}{2}=2 \sqrt{3} \pm 2 \\
& \Rightarrow \quad \mathrm{x}=2 \sqrt{3}+2 \text { or } 2 \sqrt{3}-2 \\
& \left|\triangle \mathrm{ABC}-\triangle \mathrm{ABC}^{\prime}\right|=\left|\frac{1}{2} \times 4 \sin 30^{\circ} \times \mathrm{BC}-\frac{1}{2} \times 4 \sin 30^{\circ} \times \mathrm{BC}^{\prime}\right| \\
& \left.\quad=\mathrm{BC}-\mathrm{BC}^{\prime}=4 \text { Ans. }\right]
\end{aligned}
$$

30. Ans 2

$$
\begin{aligned}
f(\theta) & =\frac{1-\sin 2 \theta+\cos 2 \theta}{2 \cos 2 \theta}=\frac{(\cos \theta-\sin \theta)^{2}+\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{2(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)}=\frac{(\cos \theta-\sin \theta)+(\cos \theta+\sin \theta)}{2(\cos \theta+\sin \theta)} \\
& =\frac{2 \cos \theta}{2(\cos \theta+\sin \theta)}=\frac{1}{1+\tan \theta}
\end{aligned}
$$

$$
f\left(11^{\circ}\right) \cdot f\left(34^{\circ}\right)=\frac{1}{\left(1+\tan 11^{\circ}\right)} \cdot \frac{1}{\left(1+\tan 34^{\circ}\right)}=\frac{1}{\left(1+\tan 11^{\circ}\right)} \cdot \frac{1}{\left(1+\tan \left(45^{\circ}-11^{\circ}\right)\right)}
$$

$$
=\frac{1}{\left(1+\tan 11^{\circ}\right)} \cdot \frac{1}{1+\frac{1-\tan 11^{\circ}}{1+\tan 11^{\circ}}}=\frac{1}{\left(1+\tan 11^{\circ}\right)} \cdot \frac{1+\tan 11^{\circ}}{2}=\frac{1}{2} \text { Ans.] }
$$

31. 5

$$
\begin{aligned}
& \sin ^{-1}(\sin 12)=\sin ^{-1} \sin (12-4 \pi)=12-4 \pi \\
& \cos ^{-1}(\cos 12)=\cos ^{-1} \cos (4 \pi-12)=4 \pi-12 \\
& \therefore \quad(k-2) x^{2}+8 x+k+4>0 \\
& \text { if } k=2 \text { then } 8 x+4>0(\text { not possible }) \\
& \text { and } \quad 64-4(k-2)(k+4)<0 \\
& \\
& \quad 16<k^{2}+2 k-8 \\
& \\
& \quad k^{2}+2 k-24>0 \\
& \quad(k+6)(k-4)>0
\end{aligned}
$$

32. 4
33. 8

Using graphical addition, the graph of $y=\sec \theta+\operatorname{cosec} \theta$ is shown

For two real roots $-2 \sqrt{2}<\mathrm{c}<2 \sqrt{2}$
$\Rightarrow \quad \mathrm{c}^{2}<8$
34. [Ans. 4]
$\mathrm{T}_{\mathrm{r}}=(2 r+1) 2^{r}$

$$
S_{n}=3 \cdot 2^{1}+5 \cdot 2^{2}+7 \cdot 2^{3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .(2 n+1) 2^{n}
$$

Sub $2 S_{n}=3 \cdot 2^{2}+5 \cdot 2^{3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .(2 n-1) 2^{n}+(2 n+1) 2^{n+1}$

$$
\begin{array}{ll}
& -S_{n}=\underbrace{3 \cdot 2^{1}}+2^{3}+2^{4}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots .2^{n+1}-(2 n+1) 2^{n+1} \\
\therefore & -S_{n}=\underbrace{2+2^{2}}+2^{3}+2^{4}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots .2^{n+1}-(2 n+1) 2^{n+1} \\
\therefore & -S_{n}=\frac{2\left[2^{n+1}-1\right]}{2-1}-(2 n+1) 2^{n+1} \\
& S_{n}=(2 n+1) 2^{n+1}-\left(2^{n+2}-2\right) \\
& n \cdot 2^{n+2}+\underbrace{2^{n+1}-2^{n+2}}+2 \\
& n \cdot 2^{n+2}-\underbrace{2^{n+1}}+2 \\
& 4 n \cdot 2^{n}-2 \cdot 2^{n}+2 \\
& R=4 ; S=-2 ; T=2
\end{array}
$$

$$
\therefore \quad \mathrm{R}+\mathrm{S}+\mathrm{T}=4
$$

Ans.]

35. [Ans 5]
$x(3 x+2)^{2}+2=(a+12+9 x) x^{2}-b x+c$
$\Rightarrow \quad 4 x+2=a x^{2}-b x+c$
which is quadratic in x but it satisfies by α, β and γ so it is an identity.
$\therefore \mathrm{a}=0, \mathrm{~b}=-4, \mathrm{c}=2$
$x^{2}(4 x-4)(x-2)<0$
$\Rightarrow x^{2}(x-1)(x-2)<0$

$x \in(1,2)$
$3 x^{2}+p x+p^{2}+6 p<0$ satisfy by every $x \in(1,2)$
$f(1) \leq 0$ and $f(2) \leq 0$
$p^{2}+7 p+3 \leq 0 \quad$ and $p^{2}+8 p+12 \leq 0$

$\mathrm{p} \in\left[\frac{-7-\sqrt{37}}{2}, \frac{-7+\sqrt{37}}{2}\right]$

$$
(p+2)(p+6) \leq 0
$$

$$
\Rightarrow \mathrm{p} \in[-6,-2]
$$

$p \in[-6.5 \ldots,-0 \ldots]$

$$
-6,-5,-4,-3,-2
$$

$\therefore \quad$ Number of integers are 5 Ans.]
36. 3
$\log ^{2}(4-x)+\log (4-x) \cdot \log \left(x+\frac{1}{2}\right)-2 \log ^{2}\left(x+\frac{1}{2}\right)=0$
let $\quad \log (4-x)=A \& \log \left(x+\frac{1}{2}\right)=B$
$A^{2}+A B-2 B^{2}=0$
$A^{2}+2 A B-A B-2 B^{2}=0$
$A(A+2 B)-B(A+2 B)=0$
$A=$ Bor $\quad A=-2 B$
$\therefore \quad \log (4-x)=\log \left(x+\frac{1}{2}\right)$
$\therefore \quad 4-x=x+\frac{1}{2} \Rightarrow 2 x=\frac{7}{2} \quad \Rightarrow \quad x=\frac{7}{4}$
$\log (4-x)=-2 \log \left(x+\frac{1}{2}\right)$
$4-x=\frac{1}{(x+(1 / 2))^{2}} \Rightarrow(4-x)\left(x^{2}+\frac{1}{4}+x\right)=1$
$4 x^{2}-x^{3}+1-\frac{x}{4}+4 x-x^{2}-1=0$
$x^{3}-3 x^{2}-\frac{15 x}{4}=0$
$x\left(4 x^{2}-12 x-15\right)=0$
$\mathrm{x}=0$
or $\quad 4 x^{2}-12 x-15=0$

$$
x=\frac{12 \pm \sqrt{144+240}}{8}=\frac{12 \pm \sqrt{384}}{8}=\frac{12 \pm 4 \sqrt{24}}{8}=\frac{3 \pm \sqrt{24}}{2}
$$

Reject $x=\frac{3-\sqrt{24}}{2}$; hence $x=\frac{3+\sqrt{24}}{2}$
$\left.\therefore \quad x=\left\{0, \frac{7}{4}, \frac{3+\sqrt{24}}{2}\right\}\right]$

