# VKR Classes 

## VKR Sir

B.Tech., IIT DELHI
with you since 15 years

## JEE Advanced

## Time : 2 hr. Test Paper 2 Date 25/01/15 <br> Batch - A <br> Marks : 120

## SINGLE CORRECT CHOICE TYPE [ 3, -1]

1. Let $f(x)=x+\sin x$. Suppose $g$ denotes the inverse functions of $f$. The value of $g^{\prime}\left(\frac{\pi}{4}+\frac{1}{\sqrt{2}}\right)$ has the value equal to
(A) $\sqrt{2}$
(B) $\frac{\sqrt{2}+1}{\sqrt{2}}$
(C) $2-\sqrt{2}$
(D) $\sqrt{2}+1$
2. Let $f(x)=x^{2} \ln (g(x))$ where $g(x)$ is a differentiable positive function on $(0, \infty)$ satisfying $g(2)=3, g^{\prime}(2)=-4$, then $f^{\prime}(2)$ equals.
(A) $-\frac{16}{6}+8 \ln (3)$
(B) $-\frac{16}{3}+4 \ln (3)$
(C) $4 \ln (3)$
(D) $-\frac{16}{3}+4 \ln (6)$
3. Number of points on $[0,2]$ where $f(x)=$ $x\{x\}+1 \quad 0 \leq x<1$ $2-\{x\} \quad 1 \leq x \leq 2$
(A) 0
(B) 1
(C) 2
(D) 3
4. Given $f(x)=\left[\begin{array}{clc}\sqrt{10-x^{2}} & \text { if } & -3<x<3 \\ 2-\mathrm{e}^{x-3} & \text { if } & x \geq 3\end{array}\right.$

The graph of $f(x)$ is
(A) continuous and differentiable at $x=3$
(B) continuous but not differentiable at $x=3$
(C) differentiable but not continuous at $x=3$
(D) neither differentiable nor continuous at $x=3$
5. Let $f(x)=\lim _{n \rightarrow \infty} \frac{\left(x^{2}+2 x+3+\sin \pi x\right)^{n}-1}{\left(x^{2}+2 x+3+\sin \pi x\right)^{n}+1}$, then
(A) $f(x)$ is continuous and differentiable for all $x \in R$.
(B) $f(x)$ is continuous but not differentiable for all $x \in R$.
(C) $f(x)$ is discontinuous at infinite number of points.
(D) $f(x)$ is discontinuous at finite number of points.
6. If $f:[-2 a, 2 a] \rightarrow R$ is an odd function such that $f(x)=f(2 a-x)$ for $x \in(a, 2 a)$. if the left hand derivative of $f(x)$ at $x=a$ is zero, then the left hand derivative of $f(x)$ at $x=-a$ is
(A) 1
(B) -1
(C) 0
(D) none
7. If $g^{\prime}(x)$ exists for all $x, g^{\prime}(0)=2$ and $g(x+y)=e^{y} g(x)+e^{x} g(y) \forall x, y$. Then
(A) $g(2 x)=-2 e^{x} g(x)$
(B) $g^{\prime}(x)=g(x)+2 e^{x}$
(C) $\lim _{h \rightarrow 0} g(h) / h=3$
(D) None of these
8. If $y=(1-x)^{-\alpha} e^{-a x} \quad x \neq 1$ then
(A) $(1-x) y^{\prime \prime}+(1-\alpha x) y^{\prime}-\alpha y=0$
(B) $(1-x) y^{\prime \prime}-(1+\alpha x) y^{\prime}-\alpha y=0$
(C) $(1-x) y^{\prime \prime}+(1+\alpha x) y^{\prime}-\alpha y=0$
(D) $(1-x) y^{\prime \prime}+(1+\alpha x) y^{\prime}+\alpha y=0$

Consider the function $f: R \rightarrow R$, defined as $f(x)= \begin{cases}x^{2}-x+3, & x \in(-\infty, 3) \cap Q \\ x+a, & x \in(-\infty, 2)-Q \\ 2^{x}+1, & x \in(2,3)-Q \\ 9 \tan \left(\frac{\pi x}{12}\right), & x \in[3,6)\end{cases}$
9. If $f(x)$ is continuous at $x=2$ then the value of a is
(A) 1
(B) 2
(C) 3
(D) indeterminate
10. At $x=3$ the function $f(x)$
(A) has a non-removable discontinuity
(B) has a removable discontinuity
(C) is differentiable
(D) is continuous but not differentiable

## Comprehension \# 2

Let $f(x)$ is a function continuous for all $x \in R$ except at $x=0$. Such that $f^{\prime}(x)<0 \forall x \in(-\infty, 0)$ and $f^{\prime}(x)>0 \quad \forall x \in(0, \infty)$. Let $\operatorname{Lim}_{x \rightarrow 0^{+}} f(x)=2, \quad \operatorname{Lim}_{x \rightarrow 0^{-}} f(x)=3$ and $f(0)=4$.
11. The values of $\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{f(-x) x^{2}}{\left\{\frac{1-\cos x}{[f(x)]}\right\}}$ where $[\cdot]$ denote greatest integer function and $\{\cdot\}$ denote fraction part function.
(A) 6
(B) 12
(C) 18
(D) 24
12. $\operatorname{Lim}_{x \rightarrow 0^{-}}\left(\left[3 f\left(\frac{x^{3}-\sin ^{3} x}{x^{4}}\right)\right]-f\left(\left[\frac{\sin x^{3}}{x}\right]\right)\right)$ where $[\cdot]$ denote greatest integer function.
(A) 3
(B) 5
(C) 7
(D) 9

Comprehension \# 3
In a certain problem the differentiation of product ( $(\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})$ ) appears. One student commits mistake and differentiates as $\frac{d f}{d x} \cdot \frac{d g}{d x}$ but he gets correct result if $f(x)=x^{3}$ and $g(4)=9, g(2)=-9$ and $g(0)=\frac{1}{3}$.
13. The derivative of $f(x-3) \cdot g(x)$ with respect to $x$ at $x=100$ is
(A) 0
(B) 1
(C) -1
(D) 2
14. $\lim _{x \rightarrow 0} \frac{f(x) \cdot g(x)}{x(1+g(x))}$ will be
(A) 0
(B) -1
(C) 1
(D) 2

## Comprehension \# 4

Consider a differentiable function $f: R \rightarrow R$ which satisfies $f^{2}\left(\frac{1}{\sqrt{2}} x\right)=f(x)$ for all $x \in R$ and $f(1)=2$.
15. If $\alpha, \beta \in R$ satisfying $\alpha^{2}+\beta^{2}=1$, then for all $x, f(\alpha x) . f(\beta x)=$
(A) $2 f(x)$
(B) $f(x)$
(C) $\alpha \beta f^{2}(x)$
(D) None of these
16. $\int f(\sqrt{2} x) \cdot \ln 2^{4 x}$ is equal to
(A) $2^{x^{2}+1}+c$
(B) $2^{2 x}+c$
(C) $2^{2 x^{2}-1}+c$
(D) $2^{2 x^{2}}+c$
17. Suppose $J=\int \frac{\sin ^{2} x+\sin x}{1+\sin x+\cos x} d x$ and $K=\int \frac{\cos ^{2} x+\cos x}{1+\sin x+\cos x} d x$. If $C$ is an arbitrary constant of integration then which of the following is/are correct?
(A) $J=\frac{1}{2}(x-\sin x+\cos x)+C$
(B) $J=K-(\sin x+\cos x)+C$
(C) $\mathrm{J}=\mathrm{x}-\mathrm{K}+\mathrm{C}$
(D) $K=\frac{1}{2}(x-\sin x+\cos x)+C$
18. For a function $f(x)=\frac{\ln (\{\sin x\} \cdot\{\cos x\}+1)}{\{\sin x\}\{\cos x\}}$ where $\{x\}$ denotes fractional part function then
(A) $f\left(0^{-}\right)=f\left(\frac{\pi^{+}}{2}\right)$
(B) $f\left(\frac{\pi^{-}}{2}\right)=f\left(0^{+}\right)$
(C) $\operatorname{Lim}_{x \rightarrow 0} f(x)=1$
(D) $\operatorname{Lim}_{x \rightarrow \pi / 2} f(x)=1$
19. Let $f(x)=x^{2} \sin \frac{1}{x}$ for $0<x \leq 1$ and $f(0)=0$. If $g(x)=x^{2}$ for $x \in[0,1]$ then which of the following statement(s) is/are correct?
(A) $f(x)$ is differentiable in $[0,1]$
(B) $\operatorname{Lim}_{x \rightarrow 0} \frac{f(x)}{g(x)}$ does not exist.
(C) $\operatorname{Lim}_{x \rightarrow 0} f^{\prime}(x) g^{\prime}(x)$ does not exist
(D) $\operatorname{Lim}_{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist.
20. Let $y=\sqrt{(\sin x+\sin 2 x+\sin 3 x)^{2}+(\cos x+\cos 2 x+\cos 3 x)^{2}}$ then which of the following is correct?
(A) $\frac{d y}{d x}$ when $x=\frac{\pi}{2}$ is -2
(B) value of $y$ when $x=\frac{\pi}{5}$ is $\frac{3+\sqrt{5}}{2}$
(C) value of $y$ when $x=\frac{\pi}{12}$ is $\frac{\sqrt{1}+\sqrt{2}+\sqrt{3}}{2}$
(D) $y$ simplifies to $(1+2 \cos x)$ in $[0, \pi]$
21. The functionf $f(x)=\max (|\tan x|, \cos |x|)$ is
(A) not differentiable at 4 points in $(-\pi, \pi)$
(B) discontinuous at 2 points in $(-\pi, \pi)$
(C) not differentiable at only 2 points in $(-\pi, \pi)$
(D) in $(-\pi, \pi)$ there are onl 2 points where $f(x)$ is continuous but not differentiable
22. Let a differentiable function $f(x)$ be such that $|f(y)-f(y)| \leq \frac{1}{2}|x-y| \forall x, y \in R$ and $f^{\prime}(x) \geq \frac{1}{2}$. Then the number of points of intersection of the graph of $y=f(x)$ with
(A) the line $y=x$ is one
(B) the curve $y=-x^{3}$ is one
(C) the curve $2 y=|x|$ is three
(D) None of these
23. Let $f(x)=|x-1|([x]-[-x])$, then which of the following statement(s) is/are correct? (where $[x]$ denotes greatest integer function)
(A) $f(x)$ is continuous at $x=1$
(B) $f(x)$ is derivable at $x=1$
(C) $f(x)$ is non-derivable at $x=1$
(D) $f(x)$ is discontinuous at $x=1$.
24. Which of the following statement(s) is/are correct?
(A) Let $f$ and $g$ be defined on $R$ and $c$ be any real number. If $\lim _{x \rightarrow c} f(x)=b$ and $g(x)$ is continuous at $x=b$ then $\lim _{x \rightarrow c} g(f(x))=g(b)$.
(B) There exist a function $f:[0,1] \rightarrow R$ which is discontinuous at every point in $[0,1]$ and $|f(x)|$ is continuous at every point in $[0,1]$.
(C) If $f(x)$ and $g(x)$ are two continuous function defined from $R \rightarrow R$ such that $f(r)=g(r)$ for all rational numbers 'r' then $f(x)=g(x) \forall x \in R$.
(D) If $f(a)$ and $f(b)$ possesses opposite signs then there must exist atleast one solution of the equation $f(x)=0$ in ( $a, b$ ) provided $f$ is continuous in $[a, b]$.
25. If $\operatorname{Lim}_{x \rightarrow \infty}\left(\sqrt{x^{2}-x+1}-a x-b\right)=0$, then for $k \geq 2, k \in N$ which of the following is/are correct?
(A) $2 \mathrm{a}+\mathrm{b}=0$
(B) $a+2 b=0$
(C) $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \sec ^{2 \mathrm{n}}(\mathrm{k}!\pi \mathrm{b})=1$
(D) $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \sec ^{2 \mathrm{n}}(\mathrm{k}!\pi \mathrm{a})=1$
26. Which of the following functions are not derivable at $x=0$ ?
(A) $f(x)=\sin ^{-1} 2 x \sqrt{1-x^{2}}$
(B) $g(x)=\sin ^{-1}\left(\frac{2^{x+1}}{1+4^{x}}\right)$
(C) $h(x)=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
(D) $k(x)=\sin ^{-1}(\cos x)$

## INTEGER ANSWER TYPE [3, 0]

27. If $\int \frac{\sin ^{3} \frac{\theta}{2} d \theta}{\cos \frac{\theta}{2} \sqrt{\cos ^{3} \theta+\cos ^{2} \theta+\cos \theta}}$
$=\tan ^{-1} \sqrt{f(\theta)}+c$ then the least value of $f(\theta)$ for allowable values of $\theta$ is equal to :
28. If the function $f(x)=\operatorname{Lim}_{n \rightarrow \infty} \frac{x^{n}\left(a+\sin \left(x^{n}\right)\right)+\left(b-\sin \left(x^{n}\right)\right)}{\left(1+x^{n}\right) \sec \left(\tan ^{-1}\left(x^{n}+x^{-n}\right)\right)}$ is continuous at $x=1$ then $a+b$ is equal to
29. Given $f^{\prime \prime}(x)=\cos x, f^{\prime}\left(\frac{3 \pi}{2}\right)=e$ and $f(0)=1$, then $f(x)=(e+a) x-\cos x+b$ where $a+b$ is equal to
30. Let $g(x)=f(x) \sin x$, where $f(x)$ is a twice differentiable function on $(-\infty, \infty)$ such that $f^{\prime}(-\pi)=1$. The value of $\mid g^{\prime \prime}(-\pi)$ |equals
31. If the differential coefficients of $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ at $x=-\frac{\sqrt{3}}{2}, 0, \frac{\sqrt{3}}{2}$ are $a, b, c$ respectively, then find the value of $a+b-c$.
32. Let $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are differentiable functions satisfying the conditions ;
(i) $f(0)=2 ; g(0)=1$
(ii) $f^{\prime}(x)=g(x)$
and (iii) $g^{\prime}(x)=f(x)$.
Find the value of $(f(1))^{2}-(g(1))^{2}$.
33. A function $f(x)$ continuous on $R$ and periodic with period $2 \pi$ satisfies $f(x)+\sin x \cdot f(x+\pi)=\sin ^{2} x$. The value of $(2 f(\pi / 6))^{-1}$
34. Let $f(x)=x^{n}, n \in W$. The number of values of $n$ for which $f^{\prime}(p+q)=f^{\prime}(p)+f^{\prime}(q)$ is valid for all positive $p$ and $q$ is
35. Let $f(x)=\left(x^{2}-4\right)\left|\left(x^{3}-6 x^{2}+11 x-6\right)\right|+\frac{x}{1+|x|}$. Find the number of points at which the function $f(x)$ is not differentiable.
36. If $f^{\prime}(a)=\frac{1}{4}$, then $\lim _{h \rightarrow 0} \frac{f\left(a+2 h^{2}\right)-f\left(a-2 h^{2}\right)}{f\left(a+h^{3}-h^{2}\right)-f\left(a-h^{3}+h^{2}\right)}$ is equal to

## MATRIX MATCH TYPE [ 3, -1]

## 37. Match the following

Column-I Column-II
(A)

If $\int x^{2} d\left(\tan ^{-1} x\right)=x f(x)+c$, then $f(1)$ is equal to
(B) If $\int \sqrt{1+3 \tan x(\tan x+\sec x)} d x=a \log \left|\cos \frac{x}{2}-\sin \frac{x}{2}\right|+c$
(P) 0
then a is equal to $\left(0<x<\frac{\pi}{2}\right)$
(C) If $\int x^{2} e^{2 x} d x=e^{2 x} f(x)+c$, then the minimum value of
(R) $\frac{\pi}{4}$ $f(x)$ is equal to
(D)
If $\int \frac{x^{4}+1}{x\left(x^{2}+1\right)^{2}} d x=a \log |x|+\frac{b}{x^{2}+1}+c$ then $a-b$ is
(S) $\frac{1}{8}$ equal to
38.

Column - I
(A) If $f(x y)=f(x) \cdot f(y)$ and $f$ is differentiable at $x=1$ such that $f^{\prime}(1)=1$ also $f(1) \neq 0$, then $f^{\prime}(7)$ equals
(B) If [.] denotes greatest integer fuction, then number of points at which the function $f(x)=\left|x^{2}-3 x+2\right|+|\sin x|-[x-1 / 2]$, $-\pi \leq x \leq \pi$, is non differentiable, is
(C) Let $f(x)=[a+7 \sin x], x \in(0, \pi), a \in Z$ and $[$.$] denotes greatest$ integer function. Then number of points at which $f(x)$ is not differentiable is
(D) Differential coefficient of $\sin ^{-1} \frac{2 x}{1+x^{2}}$ with respect to
(S) -1
$\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}$ in the domain of $f(x)=\frac{1}{\sqrt{1-x^{2}}}$ is
39.
(A) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (\cos x)}{\cot x}$ equals
(P) 1
(B) $\left(\lim _{x \rightarrow 0} \frac{\sin 3 x-\sin x}{\ln (x+1)}\right)^{-1}$ equals
(Q) $\lim _{x \rightarrow 0} \frac{1-\sqrt{1-4 x^{2}}}{x^{2}}$
(C) $\quad \lim _{x \rightarrow 0} \frac{25}{3}\left(\frac{\sqrt[5]{(1+x)^{3}}-1}{(1+x) \sqrt[3]{(1+x)^{2}}-1}\right) \quad$ equals
(D) $\lim _{x \rightarrow 0} \frac{\ln x+\ln \left(\frac{1}{x}+3 \sin x\right)}{\tan \left(x^{2}\right)}$ equals
(R) $\frac{1}{2}$
(S) 3
40.

## Column - I

Column - II
(A) Number of natural numbers less than the fundamental period of $\sin ^{2} x+\sec ^{2} x-\tan ^{2} x$
(B) Number of points of discontinuity
(P) 1
of the function $f(x)=[x]+\{2 x\}+[3 x]$
for $x \in[0,1]$, where [ . ] and $\{$.$\} represent$ greatest integer and fractional part functions respectively.
(C)
 greatest integer function
(D) Number of solution of the equation
(R) 3
$\sin ^{-1} x-2 \cos ^{-1}(1+x)=0$.

Answer Sheet

Student Name: $\qquad$

| 1. (A)B(C) | 2 (A)(B)(C) | 3. (A)(B)(C) | 4. (A) (B) (C) (D) |
| :---: | :---: | :---: | :---: |
| 5. (A)(B)(C) | 6. (A)BC(D) | 7. (A) (B) (C) | 8. (A)(B)(C) |
| 9. (A)(B)(C)(D) | 10. (A)(B)(C)(D) | 11.(A)(B)(C) | 12(A)(B)(C)(D) |
| 13.(A)(B)(C)(D) | 14. (A)(B)(C)(D) | 15. (A) (B) (C) (D) | 16. (A)(B)(C)(D) |
| 17. (A)BC(C) | 18.(A)(B)(C)(D) | 19.(A)(B)(C)(D) | 20.(A)(B)(C)(D) |
| 21. (A)(B)(C)(D) | 22. (A)(B)(C)(D) | 23. (A) (B) (C)(D) | 24.(A)(B)(C)(D) |
| 25. (A)(B)(C)(D) | 26. (A)(B)(C) |  |  |
| 27. (0) (1) (2) (3) | (5) (6) (7) (8) (9) | 28. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 29. (0) (1) (2) (3) | (6) (7) 8) (9) | 30. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 31. (0) (1) (2) (3) | (6) (7) (8) 9 | 32. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 33. (0) (1) (2) (3) | (5) (6) (7) (8) 9 | 34. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 35. (0) (1) (2) (3) | (6) (7) 88 | 36. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 37. A B C | A B C D | C D | 40. A B C D |
| $\bigcirc(P)$ | $\bigcirc(P)$ | P P P P | $\bigcirc(P)$ |
| @ @ @ | © @ @ | @ @ @ | @ @ @ |
| (B) B B B | (B) B B B | (B)B B B | (B) B B B |
| (S) (S) (S) | (S) (S) (S) (S) | (S) (S) (S) (S) | (S) (S) (S) (S) |

## ANSWER WITH SOLUTION

ANSWER KEY

| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A. | C | B | C | B | A | C | B | B | C | D | B | B |  |
| Q. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |  |
| A. | A | A | B | D | BC | AB | ABD | AB | ABD | AB | AC | All |  |
| Q. | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |  |
| A. | BCD | BCD | 3 | 0 | 3 | 2 | 2 | 3 | 5 | 2 | 2 | 0 |  |
| Q. | 37. |  |  |  |  |  | 38. |  |  |  |  |  |  |
| A. | $(A)-(R), B-(Q),(C)-(S),(D)-(P)$ |  |  |  |  |  | $(A)-(P), B-(R),(C)-(Q),(D)-(S)$ |  |  |  |  |  |  |
| Q. | 39. |  |  |  |  |  | 40. |  |  |  |  |  |  |
| A. | (A) - (P), B - (Q,R), (C) - (S), (D) - (S) |  |  |  |  |  | (A) - (R), $\mathrm{B}-(\mathrm{S}),(\mathrm{C})-(\mathrm{Q}),(\mathrm{D})-(\mathrm{P})$ |  |  |  |  |  |  |

## SOLUTION

2. $f^{\prime}(x)=\frac{x^{2}}{g(x)} \cdot g^{\prime}(x)+\ln g(x) \cdot 2 x$
$f^{\prime}(2)=\frac{4}{3}(-4)+\ln (3) \cdot 4=4 \ln (3)-\frac{16}{3}$ Ans.]
3. $x=1$ continuous but not derivable
$x=2$ discontinuous and not derivable
$f(x)=\left[\begin{array}{ll}x^{2}+1 & 0 \leq x<1 \\ 3-x & 1 \leq x<2 \\ 2 & x=2\end{array}\right.$

4. $f^{\prime}\left(3^{+}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{\left(2-e^{h}\right)-1}{h}=-\operatorname{Lim}_{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right)=-1$

$$
\begin{aligned}
f^{\prime}\left(3^{-}\right) & =\operatorname{Lim}_{h \rightarrow 0} \frac{f(3-h)-f(3)}{-h}=\operatorname{Lim}_{h \rightarrow 0} \frac{\sqrt{10-(3-h)^{2}}-1}{-h}=\operatorname{Lim}_{h \rightarrow 0} \frac{\sqrt{1+\left(6 h-h^{2}\right)}-1}{-h} \\
& =\operatorname{Lim}_{h \rightarrow 0} \frac{\left(6 h-h^{2}\right)}{-h\left(\sqrt{1+6 h-h^{2}}+1\right)}=\operatorname{Lim}_{h \rightarrow 0} \frac{h(h-6)}{h\left(\sqrt{1+6 h-h^{2}}+1\right)}=\frac{-6}{2}=-3
\end{aligned}
$$

Hence $\mathrm{f}^{\prime}\left(3^{+}\right) \neq \mathrm{f}^{\prime}\left(3^{-}\right) \Rightarrow \quad$ (B)]
11. $\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{f(-x) x^{2}}{\left(\frac{1-\cos x}{[f(x)]}\right)-\left[\frac{1-\cos x}{[f(x)]}\right]}=\frac{3 x^{2}}{\frac{1-\cos x}{2}-0}$
$=6 \times 2=12$ Ans.
12. $x \rightarrow 0^{-}\left(\frac{x^{3}-\sin ^{3} x}{x^{4}}\right)=\left(\frac{x-\sin x}{x^{3}}\right)\left(\frac{x^{2}+\sin ^{2} x+x \sin x}{x^{2}}\right) x=\frac{1}{6}(3) x \rightarrow 0^{-} \Rightarrow f\left(0^{-}\right)=3$
$x \rightarrow 0^{-} \quad \frac{\sin x^{3}}{x}=\frac{\sin x^{3}}{x^{3}} x^{2} \rightarrow 0^{+} \quad \Rightarrow\left[\frac{\sin x^{3}}{x}\right]=0 \Rightarrow f(0)=4$
$\therefore \quad 3 f\left(\frac{x^{3}-\sin ^{3} x}{x^{4}}\right)>9$
$\Rightarrow \quad\left[9^{+}\right]-f(0)=9-4=5$ Ans.]
15. $f^{2}\left(\frac{1}{\sqrt{2}} x\right)=f(x)$

Differentiate both sides w.r.t. $x \quad \sqrt{2} f\left(\frac{1}{\sqrt{2} x}\right) f^{\prime}\left(\frac{1}{\sqrt{2}} x\right)=f^{\prime}(x)$

$$
\begin{aligned}
& \frac{\frac{x}{\sqrt{2}} f\left(\frac{1}{\sqrt{2}} x\right)}{f^{\prime}\left(\frac{1}{\sqrt{2}} x\right)}=\frac{x f(x)}{f^{\prime}(x)} \Rightarrow \quad \frac{x f(x)}{f^{\prime}(x)}=\text { constant } \quad \Rightarrow \quad \frac{f^{\prime}(x)}{f(x)}=c x \\
& \text { ln }|f(x)|=\frac{c x^{2}}{2}+k \quad f(x)=A . e^{\frac{c x^{2}}{2}} \\
& f(0)=1, f(1)=2 \quad \Rightarrow \quad f(x)=2^{x^{2}} \\
& f(\alpha x)+f(\beta x)=2^{\left(\alpha^{2}+\beta^{2}\right) x^{2}}=2^{x^{2}}=f(x) .
\end{aligned}
$$

16. $\int 2^{(\sqrt{2} x)^{2}} \ln 2^{4 x} d x=2 \ln 2 \int 2 x .2^{2 x^{2}} d x$

Put $x^{2}=t$

$$
=2 \ln 2 \int 2^{2 t} d t=2 \ell n 2 \cdot \frac{2^{2 t}}{2 \ell n 2}+c=2^{2 t}+c=2^{2 x^{2}}+c
$$

17. $J+K=\int \frac{1+\sin x+\cos x}{1+\sin x+\cos x} d x$
$J+K=x+C \ldots$
again $J-K=\int \frac{\left(\sin ^{2} x-\cos ^{2} x\right)+\sin x-\cos x}{1+\sin x+\cos x} d x=\int \frac{(\sin x-\cos x)+(\sin x+\cos x+1)}{1+\sin x+\cos x} d x$

$$
\begin{equation*}
J-K=-\cos x-\sin x+C \tag{2}
\end{equation*}
$$

hence $J=K-(\sin x+\cos x)+C \quad \Rightarrow$
Also (1) $+(2)$

$$
\begin{align*}
& 2 J=x-(\cos x+\sin x)+C  \tag{B}\\
& J=\frac{1}{2}[x-\sin x-\cos x]+C
\end{align*}
$$

and

$$
(1)-(2)
$$

$$
2 K=x+(\sin x+\cos x)+C
$$

$$
K=\frac{1}{2}(x+\sin x+\cos x)+C
$$

from (1)

$$
J=x-K+C \Rightarrow \quad \text { (C) }]
$$

18. $f\left(0^{+}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{\ln (\sin h \cdot \cosh +1)}{\sin h \cdot \cosh }=\operatorname{Lim}_{h \rightarrow 0} \frac{\ln (\sin h \cdot \cosh +1)}{\frac{\sin h}{h} \cdot h \cosh }$
$=\operatorname{Lim}_{h \rightarrow 0} \ln (\sinh \cdot \cosh +1)^{1 / h}=\operatorname{Lim}_{h \rightarrow 0} \frac{1}{h}(\sinh \cdot \cosh +1-1)=1$
$f\left(\frac{\pi^{-}}{2}\right)=\underset{h \rightarrow 0}{\operatorname{Lim}} \frac{\ln (\cosh \cdot \sin h+1)}{\cosh \cdot \sin h}=f\left(0^{+}\right) \quad \Rightarrow \quad$ (B) Ans.
$f\left(0^{-}\right)=\operatorname{Lim}_{h \rightarrow 0} \frac{\ln ((1-\sin h) \cos h+1)}{(1-\sin h) \cos h}$
$\mathrm{f}\left(0^{-}\right)=\ln 2 \quad \Rightarrow \quad \operatorname{Lim}_{\mathrm{x} \rightarrow 0} f(\mathrm{x})$ does not exist
$f\left(\frac{\pi^{+}}{2}\right)$ is same as $f\left(0^{-}\right) \Rightarrow$ (A) Ans. and $\operatorname{Lim}_{x \rightarrow \pi / 2} f(x)$ does not exist ]
19. $f^{\prime}(0)=0 ; f^{\prime}(x)=\left[\begin{array}{l}2 x \sin \frac{1}{x}-\cos \frac{1}{x} \\ 0 \text { if } x=0\end{array}\right.$ for $0<x \leq 1$
$\Rightarrow f(x)$ is differentiable in $[0,1]$
$\operatorname{Lim}_{x \rightarrow 0} \frac{f(x)}{g(x)}=\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2} \sin (1 / x)}{x^{2}}$ D.N.E.
$\operatorname{Lim}_{x \rightarrow 0} f^{\prime}(x) g^{\prime}(x)=\operatorname{Lim}_{x \rightarrow 0} 4 x^{2} \sin \frac{1}{x}-2 x \cos \frac{1}{x}=0 \quad \Rightarrow \quad$ (C) is not correct.
$\operatorname{Lim}_{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist $\quad \Rightarrow \quad$ (D) ]
20. $\sqrt{3+2(\cos x+\cos x+\cos 2 x)}=\sqrt{3+2\left(2 \cos x+2 \cos ^{2} x-1\right)}$

$$
\begin{aligned}
& =\sqrt{4 \cos ^{2} x+4 \cos x+1}=\sqrt{(1+2 \cos x)^{2}}=|1+2 \cos x| \\
y & =\left[\begin{array}{ll}
1+2 \cos x & \text { if } x \in[0,2 \pi / 3) \\
-(1+2 \cos x) & \text { if } x \in[2 \pi / 3, \pi]
\end{array}\right.
\end{aligned}
$$

now verify all the alternatives. ]
25. $a=1 ; b=-\frac{1}{2} ;(C)$ and (D) are obvious ]
26. (A) not derivable at $\mathrm{x}=\frac{1}{\sqrt{2}}$ check with $\mathrm{x}=\sin \theta$ or direct diff.
(B) $\quad g^{\prime}(x)=\frac{1}{\sqrt{1-\left(\frac{2 \cdot 2^{x}}{1+2^{2 x}}\right)^{2}}} \cdot \frac{\left(1+4^{x}\right)\left(2^{x+1}\right) \ln 2-2^{x+1} \cdot 4^{x} \cdot \ln 4}{\left(1+4^{x}\right)^{2}}$

$$
=\frac{\left(1+2^{2 \mathrm{x}}\right)^{2}}{\sqrt{\left(1+2^{2 \mathrm{x}}\right)^{2}-\left(2 \cdot 2^{\mathrm{x}}\right)^{2}}}=\frac{1}{\left|1-2^{2 \mathrm{x}}\right|} \Rightarrow \quad \text { not derivable at } \mathrm{x}=0 \text { ] }
$$

27.3

$$
\begin{aligned}
& I=\int \frac{\sin ^{2} \frac{\theta}{2}}{\cos \frac{\theta}{2} \sqrt{\cos ^{3} \theta+\cos ^{2} \theta+\cos \theta}} d \theta=\int \frac{\left(2 \sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}\right) \sin ^{2} \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2} \sqrt{\cos ^{3} \theta+\cos ^{2} \theta+\cos \theta}} d \theta \\
& =\int \frac{2 \sin ^{2} \frac{\theta}{2} \sin \theta d \theta}{2 \cos ^{2} \frac{\theta}{2} \sqrt{\cos ^{3} \theta+\cos ^{2} \theta+\cos \theta}} \\
& \text { Put } \cos \theta=t \quad \Rightarrow \quad-\sin \theta d \theta=d t \\
& \text { Also } \cos \theta=2 \cos ^{2} \frac{\theta}{2}-1=1-2 \sin ^{2} \frac{\theta}{2}=t \\
& \therefore \quad I=\int \frac{\frac{1-t}{2}(-d t)}{(1+t) \sqrt{t^{3}+t^{2}+t}}=\frac{1}{2} \int \frac{\left(t^{2}-1\right) d t}{(t+1)^{2} \sqrt{t^{3}+t^{2}+t}}=\frac{1}{2} \int \frac{\left(1-\frac{1}{t^{2}}\right)(d t)}{\left(t+\frac{1}{t}+2 \sqrt{t+\frac{1}{t}+1}\right)} \\
& \text { Put } t+\frac{1}{t}+1=u^{2} \quad \Rightarrow \quad\left(1-\frac{1}{t^{2}}\right) d t=2 u d u \\
& \quad I=\frac{1}{2} \int \frac{2 u d u}{\left(1+u^{2}\right) u}=\tan ^{-1} u=\tan ^{-1} \sqrt{1+\frac{1}{t}+1}+c=\tan ^{-1}(\cos \theta+\sec \theta+1)^{1 / 2}+c
\end{aligned}
$$

So, $f(\theta)=\cos \theta+\sec \theta+1 \geq 2+1=3$
28. 0
$f(x)=\operatorname{Lim}_{n \rightarrow \infty} \frac{x^{n}\left(a+\sin \left(x^{n}\right)\right)+\left(b-\sin \left(x^{n}\right)\right)}{\left(1+x^{n}\right) \sec \left(\tan ^{-1}\left(x^{n}+x^{-n}\right)\right)}$
for continuity at $x=1$
$\operatorname{Lim}_{x \rightarrow 1} f(x)$ must exist and equals $f(1)$

$$
f(1)=\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \frac{1^{\mathrm{n}}\left(a+\sin 1^{\mathrm{n}}\right)+b-\sin \left(1^{\mathrm{n}}\right)}{\left(1+1^{\mathrm{n}}\right) \cdot \sec \left(\tan ^{-1}\left(1^{\mathrm{n}}+1^{-\mathrm{n}}\right)\right)}=\frac{a+\sin 1+b-\sin 1}{\sec \left(\tan ^{-1} 2\right)}=\frac{a+b}{2 \sqrt{5}}
$$

Now for $x>1$ in the immediate neighbourhood

$$
f(x)=\operatorname{Lim}_{n \rightarrow \infty} \frac{a+\sin \left(x^{n}\right)+\frac{b-\sin x^{n}}{x^{n}}}{\left(1+\frac{1}{x^{n}}\right) \sec \left(\tan ^{-1}\left(x^{n}+x^{-n}\right)\right)}=\frac{a+(\text { some quantity between } 1 \text { and }-1)+0}{1 \cdot \sec \left(\tan ^{-1} \infty\right)}=0
$$

|||ly for $\mathrm{x}<0$ in the immediate neighbourhood =0

$$
f(x)=\frac{b}{1 \cdot \sec \left(\tan ^{-1} \infty\right)}=0
$$

Hence $\mathrm{f}(\mathrm{x})=0$ for $\mathrm{x} \neq 1 \quad \therefore \quad \operatorname{Lim}_{\mathrm{x} \rightarrow 1} \mathrm{f}(\mathrm{x})=0=\mathrm{a}+\mathrm{b}$ ]
29. 3
$f^{\prime \prime}(x)=\cos x$
$f^{\prime}(x)=\sin x+C$
$e=-1+C \quad \Rightarrow \quad C=e+1$
$f(x)=-\cos x+(e+1) x+C_{2}$
$1=-1+C_{2} \Rightarrow C_{2}=2 \quad \Rightarrow f(x)=(e+1) x-\cos x+2$
30. 2

We have $g(x)=f(x) \sin x$
On differentiating equation (1) w.r.t. $x$, we get
$g^{\prime}(x)=f(x) \cos x+f^{\prime}(x) \sin x \ldots .(2)$
Again differentiating equation (2) w.r.t. $x$, we get
$g^{\prime \prime}(x)=f(x)(-\sin x)+f^{\prime}(x) \cos x+f^{\prime}(x) \cos x+f "(x) \sin x$
$\Rightarrow \quad g^{\prime \prime}(-\pi)=2 f^{\prime}(-\pi) \cos (-\pi)=2 \times 1 \times-1=-2$
Hence $\mathrm{g}^{\prime \prime}(-\pi)=-2$
32. Ans. 3

$$
\begin{array}{lll} 
& f^{\prime}(x)=g(x) & f(0)=2 \\
\text { add } & g^{\prime}(x)=f(x) & f^{\prime}(x)+g^{\prime}(x)=f(x)+g(x) \\
& \frac{f^{\prime}(x)+g^{\prime}(x)}{}=1 \quad \Rightarrow & \\
\Rightarrow & f(x)+g(x)
\end{array}
$$

Put $x=0$ to get $c=\ln 3$ hence $f(x)+g(x)=3 e^{x}$
(1)
similarly subtraction gives

$$
\frac{\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{g}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})}=-\mathrm{x}
$$

Integrating $\ln (f(x)-g(x))=-x+c$
$c=\ln (1)$ hence $c=0 \Rightarrow f(x)-g(x)=e-$
33. Ans. 5
$f(x)+\sin x \cdot f(x+\pi)=\sin ^{2} x$
$x \rightarrow x+\pi \quad f(x+\pi)+\sin (\pi+x) \cdot f(x+2 \pi)=\sin ^{2}(\pi+x)$

$$
\begin{equation*}
f(x+\pi)-\sin x f(x)=\sin ^{2} x \tag{1}
\end{equation*}
$$

from (1) $\quad-f(x+\pi)=\frac{\sin ^{2} x-f(x)}{\sin x}$
from (2) $\quad f(x+\pi)=\sin ^{2} x+\sin x \cdot f(x)$

$$
\begin{array}{ll}
\therefore \quad & \sin ^{2} x+\sin x \cdot f(x)=\frac{\sin ^{2} x-f(x)}{\sin x} \\
& \sin ^{3} x+\sin ^{2} x \cdot f(x)=\sin ^{2} x-f(x) \\
& f(x)\left[1+\sin ^{2} x\right]=\sin ^{2} x(1-\sin x) \\
\therefore \quad & f(x)=\frac{\sin ^{2} x(1-\sin x)}{1+\sin ^{2} x}
\end{array}
$$

