VKR Classes

VKR Sir B.Tech., IIT DELHI

with you since 15 years

JEE Advanced

Time : 2 hr. Test Paper 2 Date 25/01/15 Batch - A Marks : 120

SINGLE CORRECT CHOICE TYPE [3, -1]

Let $f(x) = x + \sin x$. Suppose g denotes the inverse functions of f. The value of $g'\left(\frac{\pi}{4} + \frac{1}{\sqrt{2}}\right)$ has the value 1. equal to (B) $\frac{\sqrt{2}+1}{\sqrt{2}}$ (C) $2-\sqrt{2}$ (D) $\sqrt{2}+1$ (A) $\sqrt{2}$ Let $f(x) = x^2 ln(g(x))$ where g(x) is a differentiable positive function on $(0, \infty)$ 2. satisfying g(2) = 3, g'(2) = -4, then f'(2) equals. $(A) - \frac{16}{6} + 8\ln(3) \qquad (B) - \frac{16}{3} + 4\ln(3) \qquad (C) 4\ln(3) \qquad (D) - \frac{16}{3} + 4\ln(6)$ Number of points on [0, 2] where $f(x) = \begin{bmatrix} x\{x\}+1 & 0 \le x < 1 \\ 2-\{x\} & 1 \le x \le 2 \end{bmatrix}$ fails to be continuous or derivable is 3. (A) U (B) 1 Given $f(x) = \begin{bmatrix} \sqrt{10 - x^2} & \text{if } -3 < x < 3\\ 2 - e^{x-3} & \text{if } x > 3 \end{bmatrix}$ (C) 2 (D) 3 4. The graph of f(x) is (A) continuous and differentiable at x = 3(B) continuous but not differentiable at x = 3(C) differentiable but not continuous at x = 3(D) neither differentiable nor continuous at x = 3Let f (x) = $\lim_{n \to \infty} \frac{(x^2 + 2x + 3 + \sin \pi x)^n - 1}{(x^2 + 2x + 3 + \sin \pi x)^n + 1}$, then 5. (A) f(x) is continuous and differentiable for all $x \in R$. (B) f(x) is continuous but not differentiable for all $x \in R$. (C) f(x) is discontinuous at infinite number of points. (D) f(x) is discontinuous at finite number of points. If f: $[-2a, 2a] \rightarrow R$ is an odd function such that f(x) = f(2a - x) for $x \in (a, 2a)$. if the left hand derivative 6. of f(x) at x = a is zero, then the left hand derivative of f(x) at x = -a is (A) 1 (B) –1 (C) 0 (D) none If g'(x) exists for all x, g' (0) = 2 and $g(x + y) = e^y g(x) + e^x g(y) \forall x, y$. Then 7. (A) $g(2x) = -2e^{x}g(x)$ (B) $g'(x) = g(x) + 2e^{x}$ (C) $\lim_{h \to 0} g(h)/h = 3$ (D) None of these If $v = (1 - x)^{-\alpha} e^{-\alpha x}$ $x \neq 1$ then 8. (A) $(1-x) y'' + (1-\alpha x)y' - \alpha y = 0$ (B) $(1-x) y'' - (1+\alpha x)y' - \alpha y = 0$ (C) $(1-x) y'' + (1+\alpha x)y' - \alpha y = 0$ (D) $(1-x)y'' + (1+\alpha x)y' + \alpha y = 0$

COMPREHENSION [3, -1]

Comprehension # 1
Consider the function f: R → R, defined as
$$f(x) = \begin{cases} x^2 - x + 3, & x \in (-\infty, 3) \cap Q \\ x + a, & x \in (-\infty, 2) - Q \\ 2^2 + 1, & x \in (2, 3) - Q \\ 9 \tan\left(\frac{\pi x}{12}\right), & x \in [3, 6) \end{cases}$$

9. If f(x) is continuous at x = 2 then the value of a is
(A) 1 (B) 2 (C) 3 (D) indeterminate
10. At x = 3 the function f(x)
(A) has a non-removable discontinuity (B) has a removable discontinuity
(C) is differentiable (D) is continuous but not differentiable
Comprehension # 2
Let f(x) is a function continuous for all x ∈ R except at x = 0. Such that f'(x) < 0 ∀ x ∈ (-∞, 0)
and f'(x) > 0 ∀ x ∈ (0, ∞). Let $\lim_{x \to 0^+} f(x) = 2$, $\lim_{x \to 0^+} f(x) = 3$ and f(0) = 4.
11. The values of $\lim_{x \to 0^+} \frac{f(-x)x^2}{\left[\frac{1-\cos x}{x^4}\right]}$ where [·] denote greatest integer function and {·} donote fraction part
function.
(A) 6 (B) 12 (C) 18 (D) 24
12. $\lim_{x \to 0^+} \left[3f\left(\frac{x^2-\sin^2 x}{x^4}\right) - f\left(\frac{\sin x^3}{x}\right) \right] \right)$ where [·] denote greatest integer function.
(A) 3 (B) 5 (C) 7 (D) 9
Comprehension # 3
In a certain problem the differentiation of product (f(x),g(x)) appears. One student commits mistake
and differentiates as $\frac{df}{dx}, \frac{dg}{dx}$ but he gets correct result if $f(x) = x^3$ and $g(4) = 9, g(2) = -9$ and $g(0) = \frac{1}{3}$.
13. The derivative of $f(x-3), g(x)$ with respect to x at x = 100 is
(A) 0 (B) 1 (C) -1 (D) 2
Comprehension # 4
Let $\lim_{x \to 0} \frac{f(x),g(x)}{(x)}$ will be
(A) 0 (B) -1 (C) 1 (D) 2
Comprehension # 4
Consider a differentiable function f: R → R which satisfies $f^2\left(\frac{1}{\sqrt{2}}X\right) = f(x)$ for all $x \in R$ and $f(1) = 2$.
15. If $\alpha, \beta \in R$ satisfying $\alpha^2 + \beta^2 = 1$, then for all $x, f(\alpha x), f(\beta x) =$
(A) 2f(x) (B) f(x) (C) $\alpha\beta f^2(x)$ (D) None of these

 $\int f(\sqrt{2} x) \cdot \ln 2^{4x}$ is equal to 16. (C) $2^{2x^2-1} + c$ (A) $2^{x^2+1} + c$ (D) $2^{2x^2} + c$ (B) $2^{2x} + c$

MULTIPLE CORRECT CHOICE TYPE [3, 0]

17. Suppose $J = \int \frac{\sin^2 x + \sin x}{1 + \sin x + \cos x} dx$ and $K = \int \frac{\cos^2 x + \cos x}{1 + \sin x + \cos x} dx$. If C is an arbitrary constant of integration then which of the following is/are correct?

(A)
$$J = \frac{1}{2}(x - \sin x + \cos x) + C$$

(B) $J = K - (\sin x + \cos x) + C$
(C) $J = x - K + C$
(D) $K = \frac{1}{2}(x - \sin x + \cos x) + C$

18. For a function $f(x) = \frac{\ln(\{\sin x\} \cdot \{\cos x\} + 1)}{\{\sin x\} \{\cos x\}}$ where $\{x\}$ denotes fractional part function then

(A)
$$f(0^{-}) = f\left(\frac{\pi}{2}^{+}\right)$$
 (B) $f\left(\frac{\pi}{2}^{-}\right) = f(0^{+})$ (C) $\lim_{x \to 0} f(x) = 1$ (D) $\lim_{x \to \pi/2} f(x) = 1$

- **19.** Let $f(x) = x^2 \sin \frac{1}{x}$ for $0 < x \le 1$ and f(0) = 0. If $g(x) = x^2$ for $x \in [0, 1]$ then which of the following statement(s) is/are correct?
 - (A) f (x) is differentiable in [0, 1](B) $\lim_{x \to 0} \frac{f(x)}{g(x)}$ does not exist.(C) $\lim_{x \to 0} f'(x)g'(x)$ does not exist(D) $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ does not exist.

20. Let $y = \sqrt{(\sin x + \sin 2x + \sin 3x)^2 + (\cos x + \cos 2x + \cos 3x)^2}$ then which of the following is correct?

- (A) $\frac{dy}{dx}$ when $x = \frac{\pi}{2}$ is -2(B) value of y when $x = \frac{\pi}{5}$ is $\frac{3+\sqrt{5}}{2}$ (C) value of y when $x = \frac{\pi}{12}$ is $\frac{\sqrt{1}+\sqrt{2}+\sqrt{3}}{2}$ (D) y simplifies to $(1 + 2\cos x)$ in $[0, \pi]$
- **21.** The function f(x) = max (|tan x|, cos|x|) is (A) not differentiable at 4 points in $(-\pi, \pi)$
 - (B) discontinuous at 2 points in $(-\pi, \pi)$
 - (C) not differentiable at only 2 points in $(-\pi, \pi)$

(D) in $(-\pi, \pi)$ there are onl 2 points where f(x) is continuous but not differentiable

- 22. Let a differentiable function f(x) be such that |f(y) f(y)| ≤ 1/2 |x y| ∀ x, y ∈ R and f'(x) ≥ 1/2. Then the number of points of intersection of the graph of y = f(x) with

 (A) the line y = x is one
 (B) the curve y = -x³ is one
 (C) the curve 2y = |x| is three
 (D) None of these

 23. Let f (x)= |x 1| ([x] [-x]), then which of the following statement(s) is/are correct?

 (where [x] denotes greatest integer function)
 (A) f (x) is continuous at x = 1
 (B) f (x) is derivable at x = 1
 (C) f (x) is non-derivable at x = 1
- VKR Classes, C 339-340 Indra Vihar, Kota. Mob. No. 9829036305

- 24. Which of the following statement(s) is/are correct?
 - (A) Let f and g be defined on R and c be any real number. If $\lim_{x\to c} f(x) = b$ and g (x) is continuous

at x = b then $\lim_{x \to c} g(f(x)) = g(b)$.

- (B) There exist a function $f : [0, 1] \rightarrow R$ which is discontinuous at every point in [0, 1] and |f(x)| is continuous at every point in [0, 1].
- (C) If f (x) and g (x) are two continuous function defined from R → R such that f (r) = g (r) for all rational numbers 'r' then f (x) = g (x) ∀ x ∈ R.
- (D) If f (a) and f (b) possesses opposite signs then there must exist atleast one solution of the equation f (x) = 0 in (a, b) provided f is continuous in [a, b].

25. If
$$\lim_{x\to\infty} \left(\sqrt{x^2 - x + 1} - ax - b\right) = 0$$
, then for $k \ge 2$, $k \in N$ which of the following is/are correct?
(A) $2a + b = 0$ (B) $a + 2b = 0$

- (C) $\lim_{n \to \infty} \sec^{2n} (k!\pi b) = 1$ (D) $\lim_{n \to \infty} \sec^{2n} (k!\pi a) = 1$
- **26.** Which of the following functions are not derivable at x = 0?

(A) f (x) =
$$\sin^{-1}2x\sqrt{1-x^2}$$

(B) g (x) = $\sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right)$
(C) h (x) = $\sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$
(D) k (x) = $\sin^{-1}(\cos x)$

INTEGER ANSWER TYPE [3, 0]

27. If $\int \frac{\sin^3 \frac{\theta}{2} d\theta}{\cos \frac{\theta}{2} \sqrt{\cos^3 \theta + \cos^2 \theta + \cos \theta}} = \tan^{-1} \sqrt{f(\theta)} + c$ then the least value of $f(\theta)$ for allowable values of

 $\boldsymbol{\theta}$ is equal to :

28. If the function
$$f(x) = \lim_{n \to \infty} \frac{x^n (a + \sin(x^n)) + (b - \sin(x^n))}{(1 + x^n) \sec(\tan^{-1}(x^n + x^{-n}))}$$
 is continuous at $x = 1$ then $a + b$ is equal to

- **29.** Given $f''(x) = \cos x$, $f'\left(\frac{3\pi}{2}\right) = e$ and f(0) = 1, then $f(x) = (e + a)x \cos x + b$ where a + b is equal to
- **30.** Let $g(x) = f(x) \sin x$, where f(x) is a twice differentiable function on $(-\infty, \infty)$ such that $f'(-\pi) = 1$. The value of $|g''(-\pi)|$ equals
- **31.** If the differential coefficients of $\sin^{-1} (2x \sqrt{1-x^2})$ at $x = -\frac{\sqrt{3}}{2}$, 0, $\frac{\sqrt{3}}{2}$ are a, b, c respectively, then find the value of a + b c.
- **32.** Let f(x) and g(x) are differentiable functions satisfying the conditions ;

(i)
$$f(0) = 2$$
; $g(0) = 1$
(ii) $f'(x) = g(x)$
and (iii) $g'(x) = f(x)$.
Find the value of $(f(1))^2 - (g(1))^2$.

- **33.** A function f(x) continuous on R and periodic with period 2π satisfies $f(x) + \sin x \cdot f(x + \pi) = \sin^2 x$. The value of $(2 f(\pi/6))^{-1}$
- **34.** Let $f(x) = x^n$, $n \in W$. The number of values of n for which f' (p + q) = f'(p) + f'(q) is valid for all positive p and q is
- **35.** Let $f(x) = (x^2 4) |(x^3 6x^2 + 11x 6)| + \frac{x}{1 + |x|}$. Find the number of points at which the function f(x) is not differentiable.

36. If f'(a) =
$$\frac{1}{4}$$
, then $\lim_{h \to 0} \frac{f(a+2h^2) - f(a-2h^2)}{f(a+h^3-h^2) - f(a-h^3+h^2)}$ is equal to

MATRIX MATCH TYPE [3, -1]

37.	Match the following									
		Column-I								
	(A)	If $\int x^2 d(\tan^{-1} x) = x f(x) + c$, then f(1) is equal to	(P)	0						
	(B)	If $\int \sqrt{1+3\tan x(\tan x + \sec x)} dx = a \log \left \cos \frac{x}{2} - \sin \frac{x}{2} \right + c$	(Q)	-2						
		then a is equal to $(0 < x < \frac{\pi}{2})$								
	(C)	If $\int x^2 e^{2x} dx = e^{2x} f(x) + c$, then the minimum value of	(R)	$\frac{\pi}{4}$						
		f(x) is equal to		·						
	(D)	If $\int \frac{x^4 + 1}{x(x^2 + 1)^2} dx = a \log x + \frac{b}{x^2 + 1} + c \text{ then } a - b \text{ is}$	(S)	<u>1</u> 8						
		equal to								
38.		Column – I	Colum	nn – II						
	(A)	If $f(xy) = f(x)$. $f(y)$ and f is differentiable at $x = 1$ such that	(P)	1						
		$f'(1) = 1$ also $f(1) \neq 0$, then $f'(7)$ equals								
	(B)	If [.] denotes greatest integer fuction, then number of points	(Q)	13						
		at which the function $f(x) = x^2 - 3x + 2 + \sin x - [x - 1/2]$,		()						
		$-\pi \le x \le \pi$, is non differentiable, is								
	(C)	Let $f(x) = [a + 7 \sin x], x \in (0, \pi), a \in Z \text{ and } [.] \text{ denotes greatest}$	(R)	R) 5						
		integer function. Then number of points at which $f(x)$ is not								
		differentiable is								
	(D)	Differential coefficient of $\sin^{-1} \frac{2x}{1+x^2}$ with respect to	(S)	- 1						
		$\cos^{-1} \frac{1-x^2}{1+x^2}$ in the domain of $f(x) = \frac{1}{\sqrt{1-x^2}}$ is								

39.		Column – I	Column – II		
	(A)	$\lim_{x \to \frac{\pi}{2}} \frac{\sin(\cos x)}{\cot x} \text{ equals}$	(P)	1	
	(B)	$\left(\lim_{x\to 0}\frac{\sin 3x - \sin x}{\ln(x+1)}\right)^{-1} \text{ equals}$	(Q)	$\lim_{x\to 0}\frac{1-\sqrt{1-4x^2}}{x^2}$	
	(C)	$\lim_{x \to 0} \frac{25}{3} \left(\frac{\sqrt[5]{(1+x)^3} - 1}{(1+x)\sqrt[3]{(1+x)^2} - 1} \right) \text{equals}$	(R)	$\frac{1}{2}$	
	(D)	$\lim_{x \to 0} \frac{\ln x + \ln \left(\frac{1}{x} + 3 \sin x\right)}{\tan(x^2)} \text{ equals}$	(S)	3	
40.		Column - I	Column - II		
	(A)	Number of natural numbers less than the fundamental period of $sin^{2}x + sec^{2}x - tan^{2}x$	(P)	1	
	(B)	Number of points of discontinuity of the function $f(x) = [x] + \{2x\} + [3x]$ for $x \in [0, 1]$, where [.] and { . } represent	(Q)	2	
		greatest integer and fractional part functions respectively.			
	(C)	$\left[\lim_{x\to 0}\frac{\sin x(1+\cos x)}{x\cos x}\right], \text{ where [.] represents}$	(R)	3	
		greatest integer function			
	(D)	Number of solution of the equation $\sin^{-1} x - 2 \cos^{-1} (1 + x) = 0.$	(S)	4	

Answer Sheet

Student Name:		Batch :	A Date : 25/01/15
	2 ABCD	3 ABCD	4 ABCD
5. ABCD	6. ABCD	7. ABCD	8 A B C D
9. ABCD	10. ABCD	11. ABCD	12 A B C D
13. A B C D	14. ABCD	15. ABCD	16. A B C D
17. ABCD	18. A B C D	19. A B C D	21.ABCD
21. ABCD	22. A B C D	23. ABCD	24. ABCD
25. A B C D	26. A B C D		
27. 0 1 2 3 4 5	6789	28. (1) (1) (2) (3)	456789
29. (1) (1) (2) (3) (4) (5)	06789	30. (1) (2) (3)	456789
31. (0) (1) (2) (3) (4) (5)	6789	32. (1) (1) (2) (3)	456789
33. (0) (1) (2) (3) (4) (5)	06789	34. (1) (1) (2) (3)	456789
35. 0 1 2 3 4 5	06739	36. (0 (1 (2 (3	456789
37. A B C D 38	. A B C D 39.	A B C D	IO. A B C D
PPPP	P P	ØØØØ	®®®®
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$			
® ® ® ®	® ® ® ®	R R	® ® ® ®
ଓ ଓ ଓ ଓ	ଓ ଓ ଓ ଓ	ଓ ଓ ଓ ଓ	ଓ ଓ ଓ ଓ

JEE Advanced

Test Paper 2

Batch - A

Date 25/01/15

ANSWER WITH SOLUTION

	ANSWER KEY																	
Q.	1	2	3	4	5	6	7	8	9	10	11	12						
A.	С	В	С	В	А	С	В	В	С	D	В	В						
Q.	13	14	15	16	17	18	19	20	21	22	23	24						
A.	А	А	В	D	BC	AB	ABD	AB	ABD	AB	AC	All						
Q.	25	26	27	28	29	30	31	32	33	34	35	36						
A.	BCD	BCD	3	0	3	2	2	3	5	2	2	0						
Q.	37.								38.									
A.	(A) – (R), B – (Q), (C) – (S), (D) – (P)							- (P), B	– (R), (C	;) – (Q),	(D) – (S)						
Q.	39.							39.					40.					
A.	(A) - (P), B - (Q,R), (C) - (S), (D) - (S)						(A) -	- (R), B	– (S), (C	(Q),	(D) – (P	(P)						

SOLUTION

ਹ

1

2

2.
$$f'(x) = \frac{x^2}{g(x)} \cdot g'(x) + ln g(x) \cdot 2x$$

f'(2) =
$$\frac{4}{3}(-4) + ln(3) \cdot 4 = 4 ln(3) - \frac{16}{3}$$
 Ans.]

$$f(x) = \begin{bmatrix} x^2 + 1 & 0 \le x < 1\\ 3 - x & 1 \le x < 2\\ 2 & x = 2 \end{bmatrix}$$

4.
$$f'(3^+) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{(2-e^h) - 1}{h} = -\lim_{h \to 0} \left(\frac{e^h - 1}{h}\right) = -1$$

$$f'(3^{-}) = \lim_{h \to 0} \frac{f(3-h) - f(3)}{-h} = \lim_{h \to 0} \frac{\sqrt{10 - (3-h)^2} - 1}{-h} = \lim_{h \to 0} \frac{\sqrt{1 + (6h - h^2)} - 1}{-h}$$
$$= \lim_{h \to 0} \frac{(6h - h^2)}{-h(\sqrt{1 + 6h - h^2} + 1)} = \lim_{h \to 0} \frac{h(h-6)}{h(\sqrt{1 + 6h - h^2} + 1)} = \frac{-6}{2} = -3$$
Hence f'(3^+) \neq f'(3^-) \rightarrow (B)]

Hence
$$f'(3^+) \neq f'(3^-) \Rightarrow$$
 (B)

11.
$$\lim_{x \to 0^+} \frac{f(-x)x^2}{\left(\frac{1-\cos x}{[f(x)]}\right) - \left[\frac{1-\cos x}{[f(x)]}\right]} = \frac{3x^2}{\frac{1-\cos x}{2} - 0}$$

= 6 × 2 = 12 **Ans**.

12.
$$x \to 0^{-} \quad \left(\frac{x^{3} - \sin^{3} x}{x^{4}}\right) = \left(\frac{x - \sin x}{x^{3}}\right) \left(\frac{x^{2} + \sin^{2} x + x \sin x}{x^{2}}\right) x = \frac{1}{6} \quad (3) \ x \to 0^{-} \quad \Rightarrow \quad f(0^{-}) = 3$$

 $x \to 0^{-} \quad \frac{\sin x^{3}}{x} = \frac{\sin x^{3}}{x^{3}} \ x^{2} \rightarrow 0^{+} \qquad \Rightarrow \quad \left[\frac{\sin x^{3}}{x}\right] = 0 \qquad \Rightarrow \quad f(0) = 4$
 $\therefore \quad 3f\left(\frac{x^{3} - \sin^{3} x}{x^{4}}\right) > 9$
 $\Rightarrow \quad [9^{+}] - f(0) = 9 - 4 = 5 \text{ Ans.}]$
15. $f^{2}\left(\frac{1}{\sqrt{2}}x\right) = f(x)$
Differentiate both sides w.r.t. $x = \sqrt{2} f\left(\frac{1}{\sqrt{2}x}\right) f'\left(\frac{1}{\sqrt{2}}x\right) = f'(x)$

$$\frac{\frac{x}{\sqrt{2}}f\left(\frac{1}{\sqrt{2}}x\right)}{f'\left(\frac{1}{\sqrt{2}}x\right)} = \frac{xf(x)}{f'(x)} \implies \frac{xf(x)}{f'(x)} = \text{constant} \implies \frac{f'(x)}{f(x)} = c x$$

$$\ell n |f(x)| = \frac{cx^2}{2} + k \qquad f(x) = A \cdot e^{\frac{cx^2}{2}}$$

$$f(0) = 1, f(1) = 2 \implies f(x) = 2^{x^2}$$

$$f(\alpha x) + f(\beta x) = 2^{(\alpha^2 + \beta^2)x^2} = 2^{x^2} = f(x).$$
16.
$$\int 2^{(\sqrt{2}x)^2} \ell n \ 2^{4x} \ dx = 2 \ \ell n \ 2 \ \int 2x \cdot 2^{2x^2} \ dx$$

$$Put \qquad x^2 = t$$

$$= 2 \ln 2 \int 2^{2t} dt = 2 \ln 2 \cdot \frac{2^{2t}}{2 \ln 2} + c = 2^{2t} + c = 2^{2x^2} + c$$

17.
$$J + K = \int \frac{1 + \sin x + \cos x}{1 + \sin x + \cos x} dx$$

$$J + K = x + C \dots (1) \Rightarrow (C)$$
again
$$J - K = \int \frac{(\sin^2 x - \cos^2 x) + \sin x - \cos x}{1 + \sin x + \cos x} dx = \int \frac{(\sin x - \cos x) + (\sin x + \cos x + 1)}{1 + \sin x + \cos x} dx$$

$$J - K = -\cos x - \sin x + C \dots (2)$$
hence
$$J = K - (\sin x + \cos x) + C \Rightarrow (B)$$
Also (1) + (2)

$$2J = x - (\cos x + \sin x) + C$$

$$J = \frac{1}{2} [x - \sin x - \cos x] + C$$

and (1) - (2)

$$2K = x + (\sin x + \cos x) + C$$

 $K = \frac{1}{2} (x + \sin x + \cos x) + C$
from (1) $J = x - K + C \Rightarrow$ (C)]
18. $f(0^{\circ}) = \lim_{h \to 0} \frac{ln(\sin h - \cosh + 1)}{\sin h \cdot \cosh h} = \lim_{h \to 0} \frac{ln(\sin h - \cosh + 1)}{h} + \frac{ln(\cos h + \cosh h)}{h}$
 $= \lim_{h \to 0} ln(\sin h \cdot \cosh h + 1)^{1/h} = \lim_{h \to 0} \frac{1}{h}(\sin h \cdot \cosh h + 1 - 1) = 1$
 $f\left(\frac{\pi}{2}\right) = \lim_{h \to 0} \frac{ln((\cos h \cdot \sin h + 1))}{(\cos h \cdot \sin h)} = f(0^{\circ}) \Rightarrow$ (B) Ans.
 $f(0^{\circ}) = h 2 \Rightarrow \lim_{x \to 0} f(x) \operatorname{does} \operatorname{not} exist$
 $f\left(\frac{\pi}{2}^{+}\right)$ is same as $f(0^{\circ}) \Rightarrow$ (A) Ans. and $\lim_{x \to 0^{1/2}} f(x)$ does not exist
 $f\left(\frac{\pi}{2}^{+}\right)$ is same as $f(0^{\circ}) \Rightarrow$ (A) Ans. and $\lim_{x \to 0^{1/2}} f(x)$ does not exist
 $f\left(\frac{\pi}{2}^{+}\right)$ is same as $f(0^{\circ}) \Rightarrow$ (A) Ans. and $\lim_{x \to 0^{1/2}} f(x)$ does not exist]
19. $f^{\circ}(0) = 0; f^{\circ}(x) = \begin{bmatrix} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & 6x < 1 \\ 0 \text{ if } x = 0 \\ \Rightarrow f(x) \text{ is differentiable in [0, 1]}$
 $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{4x^{2} \sin \frac{1}{x} - 2x \cos \frac{1}{x} = 0 \Rightarrow$ (C) is not correct.
 $\lim_{x \to 0} \frac{f'(x)}{g'(x)} \operatorname{does not exist} \Rightarrow$ (D)]
20. $\sqrt{3 + 2(\cos x + \cos x + \cos 2x)} = \sqrt{3 + 2(2\cos x + 2\cos^{2} x - 1)} = \sqrt{4\cos^{2} x + 4\cos x + 1} = \sqrt{(1 + 2\cos x)^{2}} = 1 + 2\cos x |$
 $y = \begin{bmatrix} 1 + 2\cos x & \text{if } x \in [0, 2\pi/3) \\ -(1 + 2\cos x) & \text{if } x \in [2\pi/3, \pi] \\ \operatorname{now verify all the alternatives.]} \end{bmatrix}$
26. (A) not derivable at $x = \frac{1}{\sqrt{2}}$ check with $x = \sin \theta$ or direct diff.

(B)
$$g'(x) = \frac{1}{\sqrt{1 - \left(\frac{2 \cdot 2^x}{1 + 2^{2x}}\right)^2}} \cdot \frac{(1 + 4^x)(2^{x+1})\ln 2 - 2^{x+1} \cdot 4^x \cdot \ln 4}{(1 + 4^x)^2}$$

 $= \frac{(1 + 2^{2x})^2}{\sqrt{(1 + 2^{2x})^2 - (2 \cdot 2^x)^2}} = \frac{1}{|1 - 2^{2x}|} \Rightarrow \text{ not derivable at } x = 0]$

27. 3

$$\begin{split} I &= \int \frac{\sin^2 \frac{\theta}{2}}{\cos \frac{\theta}{2} \sqrt{\cos^3 \theta + \cos^2 \theta + \cos \theta}} d\theta = \int \frac{\left(2\sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}\right) \sin^2 \frac{\theta}{2}}{2\cos^2 \frac{\theta}{2} \sqrt{\cos^3 \theta + \cos^2 \theta + \cos \theta}} d\theta \\ &= \int \frac{2\sin^2 \frac{\theta}{2} \sin \theta d\theta}{2\cos^2 \frac{\theta}{2} \sqrt{\cos^3 \theta + \cos^2 \theta + \cos \theta}} \\ \text{Put} &\cos \theta = t \implies -\sin \theta d\theta = dt \\ \text{Also} &\cos \theta = 2\cos^2 \frac{\theta}{2} - 1 = 1 - 2\sin^2 \frac{\theta}{2} = t \\ \therefore \quad I &= \int \frac{1 - t}{(1 + t)\sqrt{t^3 + t^2 + t}} = \frac{1}{2} \int \frac{(t^2 - 1)dt}{(t + t)^2 \sqrt{t^3 + t^2 + t}} = \frac{1}{2} \int \frac{\left(1 - \frac{1}{t^2}\right)(dt)}{\left(t + \frac{1}{t} + 2\sqrt{t + \frac{1}{t} + 1}\right)} \\ \text{Put} &t + \frac{1}{t} + 1 = u^2 \implies \left(1 - \frac{1}{t^2}\right) dt = 2u \, du \\ I &= \frac{1}{2} \int \frac{2u du}{(1 + u^2)u} = \tan^{-1} u = \tan^{-1} \sqrt{t^4 + \frac{1}{t} + 1} + c = \tan^{-1}(\cos\theta + \sec\theta + 1)^{1/2} + c \\ \text{So, } f(\theta) &= \cos\theta + \sec\theta + 1 \ge 2 + 1 = 3 \end{split}$$

$$f(x) &= \lim_{n \to \infty} \frac{x^n \left(a + \sin(x^n)\right) + \left(b - \sin(x^n)\right)}{(1 + x^n) \sec(\tan^{-1}(x^n + x^{-n}))} = \frac{a + \sin 1 + b - \sin 1}{\sec(\tan^{-1} 2)} = \frac{a + b}{2\sqrt{5}} \\ \text{Now for } x > 1 \text{ in the immediate neighbourhood} \\ f(x) &= \lim_{n \to \infty} \frac{a + \sin(x^n) + \frac{b - \sin(x^n)}{(1 + \frac{1}{x}^n) \sec(\tan^{-1}(x^n + x^{-n}))} = \frac{a + (\operatorname{some quantity between 1 and -1) + \theta}{1 \sec(\tan^{-1} \infty)} = 0 \\ \|\|y \text{ for } x < 0 \text{ in the immediate neighbourhood} = 0 \end{split}$$

$$f(x) = \frac{b}{1:\sec(\tan^{-1} \infty)} = 0$$
Hence f(x) = 0 for x \neq 1 \therefore $\lim_{x \to 1} f(x) = 0 = a + b$]
29. 3
f''(x) = cos x
f''(x) = sin x + C
 $e = -1 + C \implies C = e + 1$
f(x) = - cos x + (e + 1)x + C₂
 $1 = -1 + C_2 \implies C_2 = 2 \implies f(x) = (e + 1)x - cos x + 2$
30. 2
We have g(x) = f(x) sin x ...(1)
On differentiating equation (1) w.r.t. x, we get
g'(x) = f(x) cos x + f'(x) sin x ...(2)
Again differentiating equation (2) w.r.t. x, we get
g'(x) = f(x) cos x + f'(x) cos x + f'(x) cos x + f''(x) sin x(3)
 \Rightarrow (g'(\pi) = 2t'(-\pi) cos (-\pi) = 2 x + x - 1 = -2
Hence g''(-\pi) = -2
32. Ans. 3
f'(x) = g(x) f(0) = 2
g'(x) = f(x) cos (-\pi) = 2 x + x - 1 = -2
Hence g''(-\pi) = -2
32. Ans. 3
f'(x) = g(x) f(0) = 2
g'(x) = f(x) = g(x) g(0) = 1
add f'(x) + g'(x) = f(x) + g(x)
 $\Rightarrow \frac{f'(x) + g'(x)}{f(x) + g(x)} = 1 \implies h(h(f(x) + g(x)) = x + c$
Put x = 0 to get c = h, 3
hence f(x) + g(x) = δx^{x} (1)
similarly subtraction gives
 $\frac{f'(x) + g'(x)}{f(x) + g(x)} = -x + c$
c = h(1) hence c = 0 $\Rightarrow f(x) - g(x) = e^{x} ...(2)$
33. Ans. 5
f(x) + sin x · f(x + \pi) = sin^{2}x(1)
x $\rightarrow x + \pi$ $f(x + \pi) + sin(\pi + x) · f(x + 2\pi) = sin^{2}(\pi + x) + f(x + \pi) - sin x f(x) = sin^{2}x(2)$
from (1) $-f(x + \pi) = \frac{sin^{2}x - f(x)}{sin x}$
from (2) $f(x + \pi) = sin^{2}x + sin x · f(x)$
 \therefore $sin^{2}x + sin x · f(x) = \frac{sin^{2} x - f(x)}{sin x} + sin^{2}x (1 - sin x)$
 \therefore $f(x) = \frac{sin^{2} x(1 - sin x)}{1 + sin^{2} x}$