VKR Classes

VKR Sir

B.Tech., IIT DELHI with you since 15 years

Advanced

Test Paper 09 Time : 2 hr. Date 25/01/15 Batch - R Marks : 120

SINGLE CORRECT CHOICE TYPE [3, -1]

From the extremities P and Q of a focal chord of a parabola, perpendiculars PM and QL are drawn on 1. the axis of the parabola. If S is its focus and V, its vertex, then VM, VS and VL are in

(C) H.P. (A) A.P. (B) G.P. (D) None of these

Let Z is complex satisfying the equation $z^2 - (3 + i)z + m + 2i = 0$, where $m \in \mathbb{R}$. Suppose the 2. equation has a real root. The additive inverse of non real root, is

(A)
$$1-i$$
 (B) $1+i$ (C) $-1-i$ (D) -2

Given three points P₁, P₂ and P₃ with position vectors $\vec{r}_1 = 2\hat{i} - \hat{j} + \hat{k}$; $\vec{r}_2 = \hat{i} + 3\hat{j}$ and $\vec{r}_3 = \hat{i} + \hat{j} - 3\hat{k}$ 3. respectively. Equation of a line orthogonal to the plane containing these points and passing through the centroid P_0 of the triangle $P_1P_2P_3$, is

(A)
$$\vec{r} = \frac{1}{3} (4\hat{i} + 3\hat{j} - 2\hat{k}) + \lambda(14\hat{i} + 3\hat{j} + 2\hat{k})$$

(B) $\vec{r} = \frac{4}{3}\hat{i} + \hat{j} - \frac{2}{3}\hat{k} + \lambda(14\hat{i} + 3\hat{j} - 2\hat{k})$
(C) $\vec{r} = 4\hat{i} + 3\hat{j} - 2\hat{k} + \lambda(14\hat{i} + 3\hat{j} - 2\hat{k})$
(D) $\vec{r} = \frac{1}{3} (4\hat{i} + 3\hat{j} - 2\hat{k}) + \lambda(10\hat{i} + 3\hat{j} - 2\hat{k})$

TP & TQ are tangents to the parabola, $y^2 = 4ax$ at P & Q. If the chord PQ passes through the fixed point 4. (-a, b) then the locus of T is-

(A)
$$ay = 2b(x-b)$$
 (B) $bx = 2a(y-a)$ (C) $by = 2a(x-a)$ (D) $ax = 2b(y-b)$

The locus of the centre of a circle, which intercepts a chord of given length 2a on the axis of x and 5. passes through a given point on the axis of y distant b from the origin, is the curve

(A)
$$x^2 - 2yb + b^2 = a^2$$
 (B) $x^2 + 2yb + b^2 = a^2$ (C) $y^2 - 2xb + b^2 = a^2$ (D) none of these

If there are three square matrix A, B, C of same order satisfying the equation $A^2 = A^{-1}$ and let $B = A^{2^n}$ 6.

& C = $A^{2^{(n-2)}}$ then which of the following statements are true?

(A) det.
$$(B - C) = 0$$
 (B) $(B + C)(B - C) = 0$ (C) B must be equal to C (D) none

The three vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{k} + \hat{i}$ taken two at a time form three planes. The three unit vectors 7. drawn perpendicular to these three planes form a parallelopiped of volume :

(A)
$$\frac{1}{3}$$
 (B) 4 (C) $\frac{3\sqrt{3}}{4}$ (D) $\frac{4}{3\sqrt{3}}$
 $\lim_{n \to \infty} n \int_{0}^{\pi/2} (1 - \sqrt[n]{\sin x}) dx$ equals
(A) $\pi \ln 2$ (D) none

(A)
$$\pi \ln 2$$
 (B) $\frac{\pi}{2} \ln 2$ (C) $-\frac{\pi}{2} \ln 2$

8.

(D) none

COMPREHENSION [3, -1]

Comprehension # 1

Let A(z₁) be the point of intersection of curves $\arg(z - 2 + i) = \frac{3\pi}{4}$ and $\arg(z + i\sqrt{3}) = \frac{\pi}{3}$. B(z₂) be the

point on the curve $\arg(z + i\sqrt{3}) = \frac{\pi}{3}$ such that $|z_2 - 5|$ is minimum and $C(z_3)$ be the centre of circle |z - 5| = 3.

9. The area of triangle ABC is equal to

(A)
$$4\sqrt{3}$$
 (B) $\frac{3\sqrt{3}}{2}$ (C) $2\sqrt{3}$ (D) 4

10. The equation of straight line passing through origin and perpendicular to line joining $A(z_1)$ and $B(z_2)$ on the complex plane is equal to

(A)
$$z = \lambda(2 + i\sqrt{3})$$
 (B) $z = \lambda(-\sqrt{3} + i)$ (C) $z = \lambda(1 + i\sqrt{3})$ (D) $z = \lambda(\sqrt{3} + i)$

Comprehension # 2

A tangent is drawn to the parabola $y^2 = 4x$ at the point P which is the upper end of latus rectum.

11. Image of the parabola $y^2 = 4x$ in the tangent line at the point P is

(A)
$$(x + 4)^2 = 16y$$
 (B) $(x + 2)^2 = 8(y - 2)$ (C) $(x + 1)^2 = 4(y - 1)$ (D) $(x - 2)^2 = 2(y - 2)$

12. Area enclosed by the tangent line at P, x-axis and the parabola is

(A)
$$\frac{2}{3}$$
 (B) $\frac{4}{3}$ (C) $\frac{14}{3}$ (D) none

Comprehension # 3

Let C be a curve defined by $y = e^{a+bx^2}$. The curve C passes through the point (P(1, 1) and the slope of the tangent at P is (-2). Also C₁ and C₂ are the circles $(x - a)^2 + (y - b)^2 = 3$, $(x - 6)^2 + (y - 11)^2 = 27$ respectively.

- **13.** The length of the shortest line segment AB which is tangent to C₁ at A and to C₂ at B is (A) $9\sqrt{3}$ (B) $10\sqrt{3}$ (C) 11 (D) 12
- 14. If f is a real valued derivable function satisfying $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)}$ with f'(1) = 2. Then the value of the integral

$$\int_{b} f(x) d(\ell n x) \text{ is equal to}$$

(A) 0 (B)
$$\frac{e^2 - e^{-2}}{2}$$
 (C) $\frac{e^{-2} - e^2}{2}$ (D) 2

Comprehension # 4

Consider N = $\begin{vmatrix} 77 & 44 \\ 7 & 30 \end{vmatrix} = \prod_{i=1}^{4} (a_i)^{b_i}$ where b_i 's \in N and a_i 's are prime numbers and $a_i < a_{i+1} \forall i$. Let two circles be defined as

$$C_1 : [x^2 \ y^2] \begin{bmatrix} a_1 \\ b_1 + b_2 \end{bmatrix} = [8b_1] \text{ and } C_2 : [(x + y)^2 \ (x - y)^2] \begin{bmatrix} b_3 \\ b_4 \end{bmatrix} = [2b_2]$$

15. Radius of the circle which passes through centre of the circle C_2 and touches the circle C_1 , is

16. If the line $x + \lambda y = 1 + k\lambda$ always passes through a fixed point on the circle C₁ for all values of λ then the length of tangent from the point $(1,\sqrt{3}k)$ to the circle C₂, is (A) k (B) k² (C) 2k (D) 2k²

MULTIPLE CORRECT CHOICE TYPE [3, 0]

17. Let $f : [0, 1] \rightarrow R$ be a continuous function such that $x f(y) + yf(y) \le 1$ for any x, y in the domain. Let $I = \int_{0}^{1} f(x) dx$ then (A) $I = \int_{0}^{\pi/2} f(\sin \theta) \cos \theta d\theta$ (B) $I = \int_{0}^{\pi/2} f(\cos \theta) \cos \theta d\theta$ (C) $I \le \frac{\pi}{4}$ (D) $I \le \frac{\pi}{8}$ 18. Which of the following statement(s) is/are correct?

(A) Let f and g be defined on R and c be any real number. If $\lim_{x \to c} f(x) = b$ and g (x) is continuous at

$$x = b$$
 then $\lim_{x \to c} g(f(x)) = g(b)$.

- (B) There exist a function $f : [0, 1] \rightarrow R$ which is discontinuous at every point in [0, 1] and |f(x)| is continuous at every point in [0, 1].
- (C) If f (x) and g (x) are two continuous function defined from R → R such that f (r) = g (r) for all rational numbers 'r' then f (x) = g (x) ∀ x ∈ R.
- (D) If f (a) and f (b) possesses opposite signs then there must exist atleast one solution of the equation f (x) = 0 in (a, b) provided f is continuous in [a, b].
- **19.** The equation $\tan^{-1}x = ax^2 + b$ has two solutions when

(A)
$$a = 1, b = -\frac{8}{5}$$
 (B) $a = 2,$

20. If $f(x) = x^3 - x^2 + 100x + 2002$, then

(A) f(1000) > f(1001)

(C) f (x - 1) > f (x - 2)

23.

(B)
$$f\left(\frac{1}{2000}\right) > f\left(\frac{1}{2001}\right)$$

(D) $f(2x-3) > f(2x)$

(C) $a = \frac{1}{4}, b = \frac{\pi - 1}{4}$ (D) $a = \frac{1}{4}, b = \frac{\pi - 2}{4}$

21. Let \vec{b} and \vec{c} are non-collinear vectors. If $\vec{a}(\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b})\vec{b} = (4 - 2x - \sin y)\vec{b} + (x^2 - 1)\vec{c}$ and $(\vec{c} \cdot \vec{c})\vec{a} = \vec{c}$, then

(A)
$$x = 1$$
 (B) $x = -1$ (C) $y = (4n + 1)\frac{\pi}{2}, n \in 1$ (D) $y = (2n + 1)\frac{\pi}{2}, n \in 1$

22. If Z is a non-real complex number, then the possible values of $\frac{\text{Im }Z^5}{\text{Im}^5 Z}$, are

b = 0

- (A) 1(B) 2(C) 4(D) 5The extremum of the function, $f(x) = |x^2 + 2x 3| + (3/2) \ln x$, $x \in [1/2, 4]$ occur at :
- (A) x = 1 (B) x = 3 (C) x = 1/2 (D) x = 4

24. In which of the following cases the given equations has atleast one root in the indicated interval ? (A) $x - \cos x = 0$ in $(0, \pi/2)$

(B) x + sin x = 1 in (0,
$$\pi/6$$
)
(C) $\frac{a}{x-1} + \frac{b}{x-3} = 0$, a, b > 0 in (1, 3)

(D) f(x) - g(x) = 0 in (a, b) where f and g are continuous on [a, b] and f(a) > g(a) and f(b) < g(b).

25. The equation of the curve passing through (3, 4) & satisfying the differential equation,

$$y\left(\frac{dy}{dx}\right)^{2} + (x - y)\frac{dy}{dx} - x = 0 \text{ can be}$$
(A) $x - y + 1 = 0$
(B) $x^{2} + y^{2} = 25$
(C) $x^{2} + y^{2} - 5x - 10 = 0$
(D) $x + y - 7 = 0$

26. The inequality $\sqrt{\chi^{\log_2 \sqrt{x}}} \ge 2$ is satisfied by

(A) only one value of x (B) $x \in \left(0, \frac{1}{4}\right]$ (C) $x \in [4, \infty)$ (D) 1 < x < 2

INTEGER ANSWER TYPE [3, 0]

- 27. The normal chord at a point 't' on the parabola $y^2 = 4ax$ subtends a right angle at the vertex. Then t^2 is equal to
- **28.** A movable parabola touches the x and the y-axes at (1, 0) and (0, 1). The locus of the focus of the parabola is $ax^2-ax + ay^2 ay + 1 = 0$ where a is

29. If $f(x) = a |\cos x| + b |\sin x| (a, b \in \mathbb{R})$ has a local minimum at $x = -\frac{\pi}{3}$ and satisfies $\int_{-\pi/2}^{\pi/2} (f(x))^2 dx = 2$.

Find the values of $\,a$ and b and hence find $\,b^2/a^2$.

- **30.** Let a and b be real numbers greater than 1 for which there exists a positive real number c, different from 1, such that $2(\log_a c + \log_b c) = 9\log_{ab} c$. The largest possible value of $\log_a b$ is
- **31.** The solutions of the equation, $\left(4\sqrt{\cos\frac{x}{2}} 5 \frac{\sqrt{2}}{2}\right)^2 + \sqrt{2}\left(4\sqrt{\cos\left(\frac{x}{2}\right)} 5 \frac{\sqrt{2}}{2}\right) \frac{\cos x}{2} = 0$ form an A.P. with common difference k $\pi/2$, where k is
- **32.** If $0 \le [x] < 2$, $-1 \le [y] < 1$ and $1 \le [z] < 3$ where $[\cdot]$ denotes greatest integral function then the maximum value of the determinant

 $\mathsf{D} = \begin{vmatrix} [x] + 1 & [y] & [z] \\ [x] & [y] + 1 & [z] \\ [x] & [y] & [z] + 1 \end{vmatrix} \text{ is }$

33. Let C be the curve passing through the point (1, 1) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the x-axis. If

the area bounded by the curve C and x-axis in the first quadrant is $\frac{k\pi}{2}$ square units, then find the value of k.

- **34.** If ω is an imaginary cube root of unity, then the value of $(p + q)^3 + (p \omega + q \omega^2)^3 + (p \omega^2 + q \omega)^3$ is $k(p^3 + q^3)$, where k is
- **35.** Two points A, B whose position vectors are $3\hat{i} + \hat{j} 2\hat{k}$ and $\hat{i} 3\hat{j} \hat{k}$. One point P divide segment AB in ratio (a 1): (a + 1) internally and another point Q divide AB externally in ratio (a + 4): a. If the

length of the segment PQ comes out to be $\frac{5\sqrt{21}}{4}$, find a.

36. Let
$$u = \int_{0}^{\pi/2} \cos\left(\frac{2\pi}{3}\sin^2 x\right) dx$$
 and $v = \int_{0}^{\pi/2} \cos\left(\frac{\pi}{3}\sin x\right) dx$, then the v/u is

MATRIX MATCH TYPE [3, -1]

37.	Matcl	h the following			
		Column - I	Column - II		
	(A)	The locus of mid-points of focal radius (P)	straight line		
		of $y^2 = 4ax$ is			
	(B)	The locus of intersection of tangents to $y^2 = 4ax$ (Q)	circle		
		with slopes $m_1 \& m_2$ so that $m_1 - m_2 = c m_1 m_2$			
		(where c is a constant) is			
	(C)	The locus of intersection of tangents to (R)	equal parabola		
		$y^{2} = 4a (x + a) and y^{2} = 4b (x + b)$ which are			
		perpendicular is			
	(D)	The locus of the vertex of a parabola having a (S)	coaxi	al & equal parabola.	
		given point an focus and touching a given line is			
38.		Column - I	Colu	mn - II	
	(A)	If there are three non concurrent and non parallel lines,	(P)	1	
		then the maximum number of points which are			
		equidistant from all the three lines are			
	(B)	In a $_{\Delta}$ ABC, co–ordintates of orthocentre, centroid and	(Q)	4	
		vertex A are (3, 2), (3, 1) and (1, 2) respectively. Then			
		x-corditnate of vetex B is			
	(C)	Number of solutions of the equation $[\sin^{-1} x] = x [x]$,	(R)	-1	
		where [.] denotes greatest integer function, is			
	(D)	$\frac{1}{d} \frac{d}{d(tan^{-1} 1)}$		0	
	(D)	If value of the integral $\int_{-1}^{1} dx$ (call x') dx is	(S)	3	
		equal to $\frac{1}{2}$ then value of p is			
39.		Column-I	Colu	mn-ll	
	(A)	If $\{(1, 1), (4, 2) \text{ and } R(x, 0) \text{ be three point such that} \}$	(P)	6	
		PR + RQ is minimum, then x is equal to			
	(B)	The area bounded by the curves max $\{ x , y \} = 1$ is equal to	(Q)	2	
	(C)	The number of circles that touch all the three lines	(R)	3	
	<i>(</i>)	2x - y = 5, $x + y = 3$ and $4x - 2y = 7$ is equal to			
	(D)	If a line segment between the lines	(S)	4	
		3x + 2y - 15 = 0 and $x + 2y - 4 = 0$			
		is bisected by the point (3, 1), then negative reciprocal of			
		the slope of line containing the segment is	. .		
40.		Column - I	Colui	mn - II	
	(A)	If the point(6, k) is closest to the curve $x^2 = 2y$ at (2, 2), then k =	(P)	0	
	(B)	If the curve $y = px^2 + qx + r$ passes through the point (1, 2) and	(Q)	-2	
		touches the line $y = x$ at the origin, then the value of $p - q + r =$			
	(C)	Let $f(x) = kx^3 + 9kx^2 + 9x + 3$ be a strictly increasing function and	(R)	1	
		has no stationary point. The greatest value of k is			
		sinx sina sinb			
		π (cosx cosa cosb there the		do oo not oviet	
	(U)	Let $0 < a < b < \frac{1}{2}$. If $f(x) = \begin{vmatrix} a & a & b & b \\ tan x & tan a & tan b \end{vmatrix}$, then the	(5)	does not exist	
		minimum possible number of roots of $f'(x) = 0$, lying in (a, b), is			

Answer Sheet

Student Name:		Batch :	R Date : 25/01/15
	2 ABCD	3 ABCD	4 ABCD
5. ABCD	6. ABCD	7. ABCD	8 A B C D
9. ABCD	10. ABCD	11. ABCD	12 ABCD
13.ABCD	14. ABCD	15. ABCD	16. ABCD
17. ABCD	18. A B C D	19. ABCD	21.ABCD
21. ABCD	22. ABCD	23. ABCD	24. ABCD
25. A B C D	26. A B C D		
27. 0 1 2 3 4 5	6789	28. (1) (1) (2) (3)	456789
29. (1) (1) (2) (3) (4) (5)	06789	30. (1) (2) (3)	456789
31. (0) (1) (2) (3) (4) (5)	00789	32. (0) (1) (2) (3)	456789
33. 0 1 2 3 4 5	06789	34. (0) (1) (2) (3)	456789
35. 0 1 2 3 4 5	06789	36. (0) (1) (2) (3)	456789
37. A B C D 38	. А В С D 39.	ABCD	10. A B C D
Image: Constraint of the second secon	P P P	ØØØØ	Image: Constraint of the second secon
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc $	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	$\bigcirc \bigcirc $
6666	6666	6666	6666

JEE Advanced

Test Paper 09

Batch - R

Date 25/01/15

ANSWER WITH SOLUTION

ANSWER KEY													
Q.	1	2	3	4	5	6	7	8	9	10	11	12	
Α.	В	С	В	С	А	В	D	В	С	В	С	А	
Q.	13	14	15	16	17	18	19	20	21	22	23	24	
Α.	С	В	А	В	AC	All	ABD	BC	AC	ABC	AD	All	
Q.	25	26	27	28	29	30	31	32	33	34	35	36	
Α.	AB	BC	2	2	3	2	8	4	1	3	2	2	
Q.	37.						38.						
A.	(A) – (S), B – (S), (C) – (P), (D) – (Q)						(A) - (Q), B - (Q), (C) - (P), (D) - (R)						
Q.	39.						40.						
Α.	(A) - (Q), B - (S), (C) - (Q), (D) - (P)					(A) - (P), B - (P), (C) - (S), (D) - (R)							

SOLUTION

3.
$$P_0 = \left(\frac{4}{3}, 1, \frac{-2}{3}\right)$$

vector normal to the plane

$$\vec{n} = \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -2 & -3 \\ 1 & -4 & 1 \end{vmatrix} = \hat{i}(-2-12) - \hat{j}(0+3) + \hat{k}(0+2)$$
$$= -(14\hat{i}+3\hat{j}-2\hat{k})$$

equation of the line is $\vec{r} = \frac{4}{3}\hat{i} + \hat{j} - \frac{2}{3}\hat{k} + \lambda(14\hat{i} + 3\hat{j} - 2\hat{k})$ Ans.]

5.
$$(x - x_1)^{2} + (y - y_1)^{2} = r^{2}$$

x-axis intercept = 2a $\Rightarrow 2\sqrt{x_1^{2} - (x_1^{2} + y_1^{2} - r^{2})} = 2a$
 $r^{2} - y_1^{2} = a^{2}$
 $\therefore y_1^{2} = r^{2} - a^{2}$
Passes through (0, b)
 $\therefore x_1^{2} + (b - y_1)^{2} = r^{2} \Rightarrow x_1^{2} + b^{2} - 2by_1 + y_1^{2} - r^{2} = 0 \Rightarrow x_1^{2} + b^{2} - 2by_1 - a^{2} = 0$
 \therefore Locus of (x_1, y_1) will be $x^{2} - 2by + b^{2} = a^{2}$]
6. $B = A^{2^{n}} = A^{2 \cdot 2^{n-1}} = (A^{2})^{2^{n-1}} = (A^{-1})^{2^{n-1}}$
 $= (A^{2^{n-1}})^{-1} = (A^{2 \cdot 2^{n-2}})^{-1} = ((A^{2})^{2^{n-2}})^{-1} = ((A^{-1})^{-1})^{2^{n-2}} = A^{2^{(n-2)}}$
so $B = C \Rightarrow A, B, C$ are answers]
7. $(\hat{i} + \hat{j}) \times (\hat{j} + \hat{k}) = \hat{i} - \hat{j} + \hat{k} \Rightarrow$ unit vector perpendicular as to the plane of
 $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is $\frac{1}{\sqrt{3}} (\hat{i} - \hat{j} + \hat{k})$ similarly other two unit vectors are

$$\frac{1}{\sqrt{3}} \left(\hat{i} + \hat{j} - \hat{k} \right) \text{ and } \frac{1}{\sqrt{3}} \left(-\hat{i} + \hat{j} + \hat{k} \right) \Rightarrow V = [\hat{n}_{1} \hat{n}_{2} \hat{n}_{3}] = \frac{1}{3\sqrt{3}} \left| \begin{array}{c} 1 & -1 & -1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{array} \right| = \frac{4}{3\sqrt{3}}$$
Alternatively: Let $\tilde{a} = \hat{i} + \hat{j}$; $\tilde{b} = \hat{j} + \hat{k}$ & $\tilde{c} = \hat{k} + \hat{i}$.
Now $\left[\tilde{a} \times \tilde{b} , \tilde{b} \times \tilde{c} , \tilde{c} \times \tilde{a} \right] = \left[\tilde{a} \ \tilde{b} \ \tilde{c} \ \tilde{j} \right]^{2} = \left| \begin{array}{c} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right|^{2} = \left[1 (1) - 1 (0 - 1) \right]^{2} = 4$
Hence actual volume with unit vectors $= \frac{4}{\left| \overline{a} \times \tilde{b} \right| \left| \overline{b} \times \tilde{c} \right| \left| \overline{c} \times \tilde{a} \right|}$
Now $\left| a \times \tilde{b} \right| = \sqrt{\overline{a^{2}} \ \tilde{b}^{2} - (\overline{a} \cdot \overline{b})^{2}} = \sqrt{4 - 1} = \sqrt{3} \text{ etc } V_{\text{actual}} = \frac{4}{3\sqrt{3}}$
8. $L = \lim_{n \to \infty} \int_{0}^{\pi/2} \left(\frac{1 - (\sin x)^{1}}{t} \right) dx$; $\text{put } n = \frac{1}{t}$
 $= \lim_{t \to 0^{+}} \int_{0}^{\pi/2} \left(\frac{1 - (\sin x)^{1}}{t \ln(\sin x)} \right) dx$; $\text{put } n = \frac{1}{t}$
Hence image of $\frac{y^{2}}{2} = 2(x + 1)$
i.e. $y = x + 1$...(1)
hence image of $\frac{y^{2}}{2} = 4x \ln (2)$ can be written as
 $(x + 1)^{2} = 4(y - 1) \Rightarrow (C)$
Find the image of $(t^{2}, 2t)$ in the tangent line and then eliminate to get the image
Area $= \frac{2}{\theta} \left[\frac{y^{2}}{4} - (y - 1) \right] dy = \frac{y^{3}}{12} - \frac{y^{2}}{2} + y^{3} \int_{0}^{2} \frac{y^{2}}{(-1,0)^{2}} + y^{2} \frac{y^{2}}{(-1,0)^{2}} + y^{2} \frac{y^{2}}{(-1,0)^{2}} + y^{2} \frac{y^{2}}{(1,0)^{2}} + y^{2}$

 C_2

 $r_2 = 3\sqrt{3}$

14. again
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}; f(1) = 1$$

$$= \frac{f(x) \left[\frac{f(x+h)}{f(x)} - 1 \right]}{h} = \frac{f(x) \lim_{x \to 0} \left[\frac{f(1+\frac{h}{x}) - 1}{\frac{h}{x}} \right]}{\left[\frac{h}{x} \right]^{-1}} - \frac{f'(1).f(x)}{x} - \frac{2f(x)}{x} \text{ (as } f(1) = f^{2}(1) \text{ but } f(1) \neq 0$$

$$\Rightarrow f(1) = 1)$$

$$\frac{f(x)}{f(x)} - \frac{2}{x}$$

$$\therefore \quad I = \int_{0}^{a} f(x) d(t'n x) = \int_{-1}^{1} x^{2} d(t'n x) = \int_{0}^{a} x \, dx = \frac{x^{2}}{2} \int_{1/a}^{a} = \frac{e^{2} - e^{-2}}{2} \text{ Ans.}$$
17. $I = \int_{0}^{\pi/2} f(\sin \theta) \cos \theta \, d\theta$

$$I = \int_{0}^{\pi/2} f(\cos \theta) \sin \theta \, d\theta$$

$$I = \int_{0}^{\pi/2} f(\cos \theta) \sin \theta \, d\theta$$
18. (A), (B) (C) and (D) are correct
(B) $f(x) = \begin{bmatrix} 1 & \text{if } x \neq Q \\ -1 & \text{if } x \neq Q \\ 0 & 0 \end{bmatrix} = \int_{0}^{\pi/2} f(x) = \frac{1}{2} \cdot \frac{1}{2}$

(D) If we pull down the graph of g(x) in (C) slightly down, there will be two solutions.

20.
$$f(x) = x^2 + 100x + 2002$$

 $f'(x) = 3x^2 - 2x + 100 > 0 \quad \forall x \in \mathbb{R}$
 \therefore $f(x) is increasing (strictly)
 \therefore $f\left(\frac{1}{2000}\right) > f\left(\frac{1}{2001}\right)$
Also $f(x-1) > f(x-2)$ as $x - 1 > x - 2$ for $\forall x$]
21. $\bar{a} \times (\bar{b} \times \bar{c}) + (\bar{a} \cdot \bar{b})\bar{b} = (4 - 2x - \siny) \, \bar{b} + (x^2 - 1)\bar{c}$
 \Rightarrow $(\bar{a} \cdot \bar{c})\bar{b} - (\bar{a} \cdot \bar{b})\bar{b} = (4 - 2x - \siny) \, \bar{b} + (x^2 - 1)\bar{c}$
Now $(\bar{c} \cdot \bar{c})\bar{a} = \bar{c}$
 \Rightarrow $(\bar{a} \cdot \bar{c})b - (\bar{a} \cdot \bar{b})\bar{c} + (\bar{a} \cdot \bar{b})\bar{b} = (4 - 2x - \siny) \, \bar{b} + (x^2 - 1)\bar{c}$
Now $(\bar{c} \cdot \bar{c})\bar{a} = \bar{c}$
 \Rightarrow $(\bar{a} \cdot \bar{c}) (\bar{c} \cdot \bar{c}) = (\bar{c} \cdot \bar{c})$
 \Rightarrow $\bar{a} \cdot \bar{c} = 1$
 \Rightarrow $1 = 4 - 2x - \sin y + x^2 - 1$
 \Rightarrow $\sin y = x^2 - 2x + 2 - (x - 1)^2 + 1$
But $\sin y \leq 1$, therefore $x = 1$, $\sin y = 1$
22. Let $Z = a + ib, b \neq 0$ where $Im Z = b$
 $Z^5 = (a + ib)^5 = a^5 + ^6C_1 a^{ab}i + ^6C_2 a^{3} b^{2}i^2 + ^6C_3 a^2b^3 i^3 + ^6C_4 ab^{4}i^4 + i^5b^5$
 $Im Z^5 = 5a^4b - 10a^2b^3 + 65^5$
 $y = \frac{Im Z^5}{Im^5 Z} = 5\left(\frac{a}{6}^4 - 10\left(\frac{a}{b}\right)^2 + 1$
Let $\left(\frac{a}{b}\right)^2 = x$ $(say), x \in \mathbb{R}^+$
 $y = 5x^2 - 10x + 1 = 5[x^2 - 2x] + 1 = 5[(x - 1)^2] - 4$
Hence $y_{min} = -4$ Ans.]
25. $\frac{dy}{dx} = \frac{(y - x) \pm \sqrt{(x - y)^2 + 4xy}}{2y}$
 \Rightarrow $\frac{dy}{dx} = 1$ or $\frac{dy}{dx} = -\frac{x}{y}$]
27.2
 $y + t, x = 2 at_1 + at_1^3$
 $\Rightarrow 2 t_2 + t_1 t_2^2 = 2 at_1 + at_1^3$
 $\Rightarrow 2 t_2 + t_1 t_2^2 = 2 at_1 + at_1^3$
 $\Rightarrow 2 t_2 + t_1 t_2^2 = 2 at_1 + at_1^3$
 $\Rightarrow 2 t_1^3 + \frac{16}{t_1} = 2 t + t_1^3$
 $a = 0$ $m_1 + \frac{16}{t_1} = 2 t + t_1^3$
 \Rightarrow $t_1^4 + 2t_1^2 - 8 = 0$
 \Rightarrow $(t_1^2 + 4) (t_1^2 - 2) = 0$
 \Rightarrow $t_1^2 = 2$$

28.

2

Since the x-axis and y-axis are two perpendicular tangents to the parabola and both meet at the origin, the directrix passes through the origin.

hence
$$1 = \frac{\pi a^2}{2} + \frac{\pi b^2}{2} + 2ab = 2$$

 $2(\sqrt{3} + \pi)a^2 = 2 \implies \boxed{a = -\frac{1}{\sqrt{\pi} + \sqrt{3}}} \text{ and } \boxed{b = -\frac{\sqrt{3}}{\sqrt{\pi} + \sqrt{3}}} \text{ Ans.]}$
31. 8
Put $4\sqrt{\cos \frac{x}{2}} - 5 - \frac{\sqrt{2}}{2} = y$ and form a quadratic in y. Solve it for y.
Ans. : $x = 4 n \pi$, $n \in 1$
32. Ans 4
 $\begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ |x| & |y| & |z| + 1 \end{vmatrix}}$
solving $= |x| + |y| + |z| + 1$
taking maximum value we get 4
note that $|x|$ is always an integer.] [Ans. 1]
33. Equation of normal is
 $\nabla - y = -\frac{1}{m}(X - x)$
 $X + mY - (x + my) = 0$ (1)
Perpendicular distance from (0, 0) to equation (1) is
 $\begin{vmatrix} x + my \\ \sqrt{1 + m^2} \end{vmatrix} = |y|$
 $\Rightarrow (x + my)^2 = y^2(1 + m^2) \Rightarrow x^2 + 2mxy = y^2 \Rightarrow m = \frac{y^2 - x^2}{2xy} \Rightarrow 2xy \frac{dy}{dx} = y^2 - x^2$ (2)
Put $y^2 = t \Rightarrow 2y \frac{dy}{dx} = \frac{dt}{dx}$
 \therefore Equation (2) becomes
 $x \frac{dt}{dx} = t - x^2 \Rightarrow \frac{dt}{dx} - \frac{1}{x}t = -x$
 \therefore I.F. $= e^{-\int \frac{1}{x}dx} = e^{-\ln x} = \frac{1}{x}$
Now general solution is given by
 $t(\frac{1}{x}) = -x + C \Rightarrow y^2(\frac{1}{x}) = -x + C$
As (1, 1) satisfy it, so $C = 2$
 $\Rightarrow y^2 = -x^2 + 2x \Rightarrow x^2 + y^2 - 2x = 0$
Hence required area $= \frac{k\pi}{2}$
 $\therefore k = 1$ Ans.]