# VKR Classes 

VKR Sir<br>B.Tech., IIT DELHI<br>with you since 15 years

## JEE Advanced

## Time : $\mathbf{2}$ hr. <br> Test Paper 09 <br> Date 25/01/15 <br> Batch - R <br> Marks : 120

## SINGLE CORRECT CHOICE TYPE [ 3, -1]

1. From the extremities $P$ and $Q$ of a focal chord of a parabola, perpendiculars $P M$ and $Q L$ are drawn on the axis of the parabola. If $S$ is its focus and V , its vertex, then VM, VS and VL are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) None of these
2. Let $Z$ is complex satisfying the equation $\quad z^{2}-(3+i) z+m+2 i=0$, where $m \in R$. Suppose the equation has a real root. The additive inverse of non real root, is
(A) 1 - i
(B) $1+i$
(C) -1 - i
(D) -2
3. Given three points $P_{1}, P_{2}$ and $P_{3}$ with position vectors $\vec{r}_{1}=2 \hat{i}-\hat{j}+\hat{k} ; \vec{r}_{2}=\hat{i}+3 \hat{j}$ and $\vec{r}_{3}=\hat{i}+\hat{j}-3 \hat{k}$ respectively. Equation of a line orthogonal to the plane containing these points and passing through the centroid $P_{0}$ of the triangle $P_{1} P_{2} P_{3}$, is
(A) $\overrightarrow{\mathrm{r}}=\frac{1}{3}(4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})+\lambda(14 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
(B) $\overrightarrow{\mathrm{r}}=\frac{4}{3} \hat{\mathrm{i}}+\hat{\mathrm{j}}-\frac{2}{3} \hat{\mathrm{k}}+\lambda(14 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
(C) $\overrightarrow{\mathrm{r}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}+\lambda(14 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
(D) $\overrightarrow{\mathrm{r}}=\frac{1}{3}(4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})+\lambda(10 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
4. $T P \& T Q$ are tangents to the parabola, $y^{2}=4 a x$ at $P \& Q$. If the chord $P Q$ passes through the fixed point $(-a, b)$ then the locus of $T$ is-
(A) $a y=2 b(x-b)$
(B) $b x=2 a(y-a)$
(C) by $=2 a(x-a)$
(D) $a x=2 b(y-b)$
5. The locus of the centre of a circle, which intercepts a chord of given length $2 a$ on the axis of $x$ and passes through a given point on the axis of $y$ distant $b$ from the origin, is the curve
(A) $x^{2}-2 y b+b^{2}=a^{2}$
(B) $x^{2}+2 y b+b^{2}=a^{2}$
(C) $y^{2}-2 x b+b^{2}=a^{2}$
(D) none of these
6. If there are three square matrix $A, B, C$ of same order satisfying the equation $A^{2}=A^{-1}$ and let $B=A^{2^{n}}$ \& $C=A^{2^{(n-2)}}$ then which of the following statements are true?
(A) det. $(B-C)=0$
(B) $(B+C)(B-C)=0$
(C) B must be equal to C
(D) none
7. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes. The three unit vectors drawn perpendicular to these three planes form a parallelopiped of volume :
(A) $\frac{1}{3}$
(B) 4
(C) $\frac{3 \sqrt{3}}{4}$
(D) $\frac{4}{3 \sqrt{3}}$
8. $\quad \operatorname{Lim}_{n \rightarrow \infty} n \int_{0}^{\pi / 2}(1-\sqrt[n]{\sin x}) d x$ equals
(A) $\pi / n 2$
(B) $\frac{\pi}{2} \ln 2$
(C) $-\frac{\pi}{2} \ln 2$
(D) none

## Comprehension \# 1

Let $A\left(z_{1}\right)$ be the point of intersection of curves $\arg (z-2+i)=\frac{3 \pi}{4}$ and $\arg (z+i \sqrt{3})=\frac{\pi}{3}$. $B\left(z_{2}\right)$ be the point on the curve $\arg (z+i \sqrt{3})=\frac{\pi}{3}$ such that $\left|z_{2}-5\right|$ is minimum and $C\left(z_{3}\right)$ be the centre of circle $|z-5|=3$.
9. The area of triangle $A B C$ is equal to
(A) $4 \sqrt{3}$
(B) $\frac{3 \sqrt{3}}{2}$
(C) $2 \sqrt{3}$
(D) 4
10. The equation of straight line passing through origin and perpendicular to line joining $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ on the complex plane is equal to
(A) $z=\lambda(2+i \sqrt{3})$
(B) $z=\lambda(-\sqrt{3}+i)$
(C) $z=\lambda(1+i \sqrt{3})$
(D) $z=\lambda(\sqrt{3}+i)$

## Comprehension \# 2

A tangent is drawn to the parabola $y^{2}=4 x$ at the point $P$ which is the upper end of latus rectum.
11. Image of the parabola $y^{2}=4 x$ in the tangent line at the point $P$ is
(A) $(x+4)^{2}=16 y$
(B) $(x+2)^{2}=8(y-2)$
(C) $(x+1)^{2}=4(y-1)$
(D) $(x-2)^{2}=2(y-2)$
12. Area enclosed by the tangent line at $P, x$-axis and the parabola is
(A) $\frac{2}{3}$
(B) $\frac{4}{3}$.
(C) $\frac{14}{3}$
(D) none

## Comprehension \# 3

Let $C$ be a curve defined by $y=e^{a+b x^{2}}$. The curve $C$ passes through the point $(P(1,1)$ and the slope of the tangent at $P$ is $(-2)$. Also $C_{1}$ and $C_{2}$ are the circles $(x-a)^{2}+(y-b)^{2}=3,(x-6)^{2}+(y-11)^{2}=27$ respectively.
13. The length of the shortest line segment $A B$ which is tangent to $C_{1}$ at $A$ and to $C_{2}$ at $B$ is
(A) $9 \sqrt{3}$
(B) $10 \sqrt{3}$
(C) 11
(D) 12
14. If $f$ is a real valued derivable function satisfying $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$ with $f^{\prime}(1)=2$. Then the value of the integral $\int_{b}^{a} f(x) d(\ell n x)$ is equal to
(A) 0
(B) $\frac{e^{2}-e^{-2}}{2}$
(C) $\frac{e^{-2}-e^{2}}{2}$
(D) 2

## Comprehension \# 4

Consider $N=\left|\begin{array}{cc}77 & 44 \\ 7 & 30\end{array}\right|=\prod_{i=1}^{4}\left(a_{i}\right)^{b_{i}}$ where $b_{i} ' s \in N$ and $a_{i}$ 's are prime numbers and $a_{i}<a_{i+1} \quad \forall i$. Let two circles be defined as
$C_{1}:\left[x^{2} y^{2}\right]\left[\begin{array}{c}a_{1} \\ b_{1}+b_{2}\end{array}\right]=\left[8 b_{1}\right]$ and $C_{2}:\left[(x+y)^{2}(x-y)^{2}\right]\left[\begin{array}{l}b_{3} \\ b_{4}\end{array}\right]=\left[2 b_{2}\right]$
15. Radius of the circle which passes through centre of the circle $\mathrm{C}_{2}$ and touches the circle $\mathrm{C}_{1}$, is
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{1}{\sqrt{2}}$
16. If the line $x+\lambda y=1+k \lambda$ always passes through a fixed point on the circle $C_{1}$ for all values of $\lambda$ then the length of tangent from the point $(1, \sqrt{3} k)$ to the circle $C_{2}$, is
(A) k
(B) $\mathrm{k}^{2}$
(C) 2 k
(D) $2 \mathrm{k}^{2}$

## MULTIPLE CORRECT CHOICE TYPE [ 3, 0]

17. Let $f:[0,1] \rightarrow R$ be a continuous function such that $x f(y)+y f(y) \leq 1$ for any $x$, $y$ in the domain. Let $I=\int_{0}^{1} f(x) d x$ then
(A) $I=\int_{0}^{\pi / 2} f(\sin \theta) \cos \theta d \theta$
(B) $I=\int_{0}^{\pi / 2} f(\cos \theta) \cos \theta d \theta$
(C) $\quad \mathrm{I} \leq \frac{\pi}{4}$
(D) I $\leq \frac{\pi}{8}$
18. Which of the following statement(s) is/are correct?
(A) Let $f$ and $g$ be defined on $R$ and $c$ be any real number. If $\operatorname{Limf}_{x \rightarrow c}(x)=b$ and $g(x)$ is continuous at $x=b$ then $\operatorname{Lim}_{x \rightarrow c} g(f(x))=g(b)$.
(B) There exist a function $f:[0,1] \rightarrow R$ which is discontinuous at every point in $[0,1]$ and $|f(x)|$ is continuous at every point in $[0,1]$.
(C) If $f(x)$ and $g(x)$ are two continuous function defined from $R \rightarrow R$ such that $f(r)=g(r)$ for all rational numbers 'r' then $f(x)=g(x) \forall x \in R$.
(D) If $f(a)$ and $f(b)$ possesses opposite signs then there must exist atleast one solution of the equation $f(x)=0$ in $(a, b)$ provided $f$ is continuous in $[a, b]$.
19. The equation $\tan ^{-1} x=a x^{2}+b$ has two solutions when
(A) $a=1, b=-\frac{8}{5}$
(B) $a=2, b=0$
(C) $a=\frac{1}{4}, b=\frac{\pi-1}{4}$
(D) $a=\frac{1}{4}, b=\frac{\pi-2}{4}$
20. If $f(x)=x^{3}-x^{2}+100 x+2002$, then
(A) $f(1000)>f(1001)$
(B) $f\left(\frac{1}{2000}\right)>f\left(\frac{1}{2001}\right)$
(C) $f(x-1)>f(x-2)$
(D) $f(2 x-3)>f(2 x)$
21. Let $\vec{b}$ and $\vec{c}$ are non-collinear vectors. If $\vec{a}(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and ( $\vec{c} \cdot \vec{c}$ ) $\vec{a}=\vec{c}$, then
(A) $x=1$
(B) $x=-1$
(C) $y=(4 n+1) \frac{\pi}{2}, n \in 1$
(D) $y=(2 n+1) \frac{\pi}{2}, n \in 1$
22. If $Z$ is a non-real complex number, then the possible values of $\frac{\operatorname{Im} Z^{5}}{\operatorname{Im}^{5} Z}$, are
(A) -1
(B) -2
(C) -4
(D) -5
23. The extremum of the function, $f(x)=\left|x^{2}+2 x-3\right|+(3 / 2) \ln x, x \in[1 / 2,4]$ occur at :
(A) $x=1$
(B) $x=3$
(C) $x=1 / 2$
(D) $x=4$
24. In which of the following cases the given equations has atleast one root in the indicated interval ?
(A) $x-\cos x=0$ in ( $0, \pi / 2$ )
(B) $x+\sin x=1$ in $(0, \pi / 6)$
(C) $\frac{a}{x-1}+\frac{b}{x-3}=0, a, b>0$ in $(1,3)$
(D) $f(x)-g(x)=0$ in (a, b) where $f$ and $g$ are continuous on $[a, b]$ and $f(a)>g(a)$ and $f(b)<g(b)$.
25. The equation of the curve passing through $(3,4) \&$ satisfying the differential equation, $y\left(\frac{d y}{d x}\right)^{2}+(x-y) \frac{d y}{d x}-x=0$ can be
(A) $x-y+1=0$
(B) $x^{2}+y^{2}=25$
(C) $x^{2}+y^{2}-5 x-10=0$
(D) $x+y-7=0$
26. The inequality $\sqrt{x^{\log _{2} \sqrt{x}}} \geq 2$ is satisfied by
(A) only one value of $x$
(B) $x \in\left(0, \frac{1}{4}\right]$
(C) $x \in[4, \infty)$
(D) $1<x<2$

## INTEGER ANSWER TYPE [3, 0]

27. The normal chord at a point 't' on the parabola $y^{2}=4 a x$ subtends a right angle at the vertex . Then $t^{2}$ is equal to
28. A movable parabola touches the $x$ and the $y$-axes at $(1,0)$ and $(0,1)$. The locus of the focus of the parabola is $a x^{2}-a x+a y^{2}-a y+1=0$ where $a$ is
29. If $f(x)=a|\cos x|+b|\sin x|(a, b \in R)$ has a local minimum at $x=-\frac{\pi}{3}$ and satisfies $\int_{-\pi / 2}^{\pi / 2}(f(x))^{2} d x=2$. Find the values of $a$ and $b$ and hence find $b^{2} / a^{2}$.
30. Let $a$ and $b$ be real numbers greater than 1 for which there exists a positive real number $c$, different from 1, such that $2\left(\log _{a} c+\log _{b} c\right)=9 \log _{a b} c$. The largest possible value of $\log _{a} b$ is
31. The solutions of the equation, $\left(4 \sqrt{\cos \frac{x}{2}}-5-\frac{\sqrt{2}}{2}\right)^{2}+\sqrt{2}\left(4 \sqrt{\cos \left(\frac{x}{2}\right)}-5-\frac{\sqrt{2}}{2}\right)-\frac{\cos x}{2}=0$ form an A.P. with common difference $k \pi / 2$, where $k$ is
32. If $0 \leq[x]<2,-1 \leq[y]<1$ and $1 \leq[z]<3$ where [ • ] denotes greatest integral function then the maximum value of the determinant
$D=\left|\begin{array}{ccc}{[x]+1} & {[y]} & {[z]} \\ {[x]} & {[y]+1} & {[z]} \\ {[x]} & {[y]} & {[z]+1}\end{array}\right|$ is
33. Let $C$ be the curve passing through the point $(1,1)$ has the property that the perpendicular distance of the origin from the normal at any point $P$ of the curve is equal to the distance of $P$ from the $x$-axis. If the area bounded by the curve $C$ and $x$-axis in the first quadrant is $\frac{k \pi}{2}$ square units, then find the value of $k$.
34. If $\omega$ is an imaginary cube root of unity, then the value of $(p+q)^{3}+\left(p \omega+q \omega^{2}\right)^{3}+\left(p \omega^{2}+q \omega\right)^{3}$ is $k\left(p^{3}+q^{3}\right)$, where $k$ is
35. Two points $A, B$ whose position vectors are $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}-\hat{k}$. One point $P$ divide segment $A B$ in ratio $(a-1):(a+1)$ internally and another point $Q$ divide $A B$ externally in ratio $(a+4): a$. If the length of the segment $P Q$ comes out to be $\frac{5 \sqrt{21}}{4}$, find a.
36. Let $u=\int_{0}^{\pi / 2} \cos \left(\frac{2 \pi}{3} \sin ^{2} x\right) d x$ and $v=\int_{0}^{\pi / 2} \cos \left(\frac{\pi}{3} \sin x\right) d x$, then the $v / u$ is

## 37. Match the following

## Column - I

(A) The locus of mid-points of focal radius of $y^{2}=4 a x$ is
(B) The locus of intersection of tangents to $y^{2}=4 a x$ with slopes $m_{1} \& m_{2}$ so that $m_{1}-m_{2}=c m_{1} m_{2}$ (where c is a constant) is
(C) The locus of intersection of tangents to $y^{2}=4 a(x+a)$ and $y^{2}=4 b(x+b)$ which are perpendicular is
(D) The locus of the vertex of a parabola having a given point an focus and touching a given line is
38.
(A) If there are three non concurrent and non parallel lines, then the maximum number of points which are equidistant from all the three lines are
(B) In a ${ }_{\triangle} A B C$, co-ordintates of orthocentre, centroid and vertex $A$ are $(3,2),(3,1)$ and $(1,2)$ respectively. Then $x$-corditnate of vetex $B$ is
(C) Number of solutions of the equation $\left[\sin ^{-1} x\right]=x[x]$, where [ . ] denotes greatest integer function, is
(D) If value of the integral $\int_{-1}^{1} \frac{d}{d x}\left(\tan ^{-1} \frac{1}{x}\right) d x$ is equal to $\frac{p \pi}{2}$ then value of ' $p$ ' is
39.
(A) If $\{(1,1),(4,2)$ and $R(x, 0)$ be three point such that $P R+R Q$ is minimum, then $x$ is equal to
(B) The area bounded by the curves $\max \{|x|,|y|\}=1$ is equal to
(C) The number of circles that touch all the three lines $2 x-y=5, x+y=3$ and $4 x-2 y=7$ is equal to
(D) If a line segment between the lines
$3 x+2 y-15=0$ and $x+2 y-4=0$ is bisected by the point $(3,1)$, then negative reciprocal of the slope of line containing the segment is
40.

## Column - I

(A) If the point $(6, k)$ is closest to the curve $x^{2}=2 y$ at $(2,2)$, then $k=$
(B) If the curve $y=p x^{2}+q x+r$ passes through the point $(1,2)$ and touches the line $y=x$ at the origin, then the value of $p-q+r=$
(C) Let $f(x)=k x^{3}+9 k x^{2}+9 x+3$ be a strictly increasing function and has no stationary point. The greatest value of $k$ is
(D) Let $0<a<b<\frac{\pi}{2}$. If $f(x)=\left|\begin{array}{ccc}\sin x & \sin a & \sin b \\ \cos x & \cos a & \cos b \\ \tan x & \tan a & \tan b\end{array}\right|$, then the minimum possible number of roots of $f^{\prime}(x)=0$, lying in $(a, b)$, is

## Column - II

(P) straight line
(Q) circle
(R) equal parabola
(S) coaxial \& equal parabola.

Column - II
(P) 1
(Q) 4
(R) $\quad-1$
(S) 3

Column-II
(P) 6
(Q) 2
(R) 3
(S) 4

## Column - II

(P) 0
(Q) $\quad-2$
(R) 1
$\square$
(S) does not exist

Answer Sheet
Student Name: $\qquad$ Batch: R
Date : 25/01/15

| 1. (A)(B)(C)(D) | 2 (4)(B)(C) | 3. (A)(B)(C)(1) | 4. (A)B(C)(1) |
| :---: | :---: | :---: | :---: |
| 5. (A)BC(C) | 6. A $^{\text {( }}$ (B)(C) $(1)$ | 7. (A)(B)(C)(1) | 8. (A)(B)(C)(1) |
| 9. (A)BC(C)(D) | 10. (A)(B)(C)(D) | 11.(A)(B)(C) | 12(A)(B)(C)(1) |
| 13(A)(B)(C)(D) | 14. (A)(B)(C)(1) | 15 (A)(B)(C) | 16.(A)(B)(C)(1) |
| 17. (A)(B)(C)(D) | 18.(A)(B)(C)(1) | 19.(A)(B)(C)(1) | 20.(A)(B)(C)(D) |
| 21. (A)(B)(C)(1) | 22.(A)(B)(C)(D) | 23.(A)(B)(C)(D) | 24.(A)(B)(C)(D) |
| 25.(A)(B)(C)(D) | 26.(A)(B)(C)(1) |  |  |
| 27. (-) (1) (2) (3)(4) (5) (6) 7- (8) (9) |  | 28. (1) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 29. (0) (1) (2) (3) (4) (5) (6) (7) 8(8) |  | 30. (1) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 31. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  | 32. (1) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 33. (1) (1) (2) (3) (4) (5) (6) 7) (8) (9) |  | 34. (1) (1) (2) (3) (4) (5) (6) 7 (8) © |  |
| 35. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  | 36. (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) |  |
| 7. A B C D | 38. A B C D | A B c D | A B $\quad$ |
|  | $\bigcirc \bigcirc(-)$ | $\bigcirc \times(-$ | $\bigcirc \bigcirc(-)$ |
| @ © @ © | @ © @ @ | @ © @ © | © © © © |
|  | (B® $\square^{8}$ ® | ®®®®® |  |
| (5) (5) (3) (5) | (5) (5) (5) (5) | (5)(5) (5) (5) | (5) (5) (5) (5) |

## ANSWER WITH SOLUTION

## ANSWER KEY

| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | B | C | A | B | D | B | C | B | C | A |  |
| Q. | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |  |
| A | C | B | A | B | AC | All | ABD | BC | AC | ABC | AD | All |  |
| Q. | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |  |
| A. | AB | BC | 2 | 2 | 3 | 2 | 8 | 4 | 1 | 3 | 2 | 2 |  |
| Q. | 37. |  |  |  |  |  | 38. |  |  |  |  |  |  |
| A. | (A) - (S), $\mathrm{B}-(\mathrm{S}),(\mathrm{C})-(\mathrm{P}),(\mathrm{D})-(\mathrm{Q})$ |  |  |  |  |  | $(A)-(Q), B-(Q),(C)-(P),(D)-(R)$ |  |  |  |  |  |  |
| Q. | 39. |  |  |  |  |  | 40. |  |  |  |  |  |  |
| A | (A) - (Q), B - (S), (C) - (Q), (D) - (P) |  |  |  |  |  | (A) - (P), B - (P), (C) - (S), (D) - (R) |  |  |  |  |  |  |

## SOLUTION

3. $\mathrm{P}_{0}=\left(\frac{4}{3}, 1, \frac{-2}{3}\right)$
vector normal to the plane

$$
\begin{aligned}
\overrightarrow{\mathrm{n}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} & =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
0 & -2 & -3 \\
1 & -4 & 1
\end{array}\right|=\hat{\mathrm{i}}(-2-12)-\hat{\mathrm{j}}(0+3)+\hat{\mathrm{k}}(0+2) \\
& =-(14 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
\end{aligned}
$$


equation of the line is $\vec{r}=\frac{4}{3} \hat{i}+\hat{j}-\frac{2}{3} \hat{\mathrm{k}}+\lambda(14 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \quad$ Ans.]
5. $\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2}$
$x$-axis intercept $=2 \mathrm{a} \Rightarrow 2 \sqrt{\mathrm{x}_{1}^{2}-\left(\mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}-\mathrm{r}^{2}\right.}=2 \mathrm{a}$

$$
r^{2}-y_{1}^{2}=a^{2}
$$

$\therefore \quad y_{1}{ }^{2}=r^{2}-a^{2}$
Passes through ( $0, \mathrm{~b}$ )
$\therefore \quad x_{1}{ }^{2}+\left(b-y_{1}\right)^{2}=r^{2} \quad \Rightarrow \quad x_{1}{ }^{2}+b^{2}-2 b y_{1}+y_{1}{ }^{2}-r^{2}=0 \Rightarrow x_{1}{ }^{2}+b^{2}-2 b y_{1}-a^{2}=0$
$\therefore \quad$ Locus of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ will be $\mathrm{x}^{2}-2 \mathrm{by}+\mathrm{b}^{2}=\mathrm{a}^{2}$ ]
6. $\mathrm{B}=\mathrm{A}^{2^{\mathrm{n}}}=\mathrm{A}^{2 \cdot 2^{\mathrm{n}-1}}=\left(\mathrm{A}^{2}\right)^{2^{\mathrm{n}-1}}=\left(\mathrm{A}^{-1}\right)^{2^{\mathrm{n}-1}}$
$=\left(A^{2^{n-1}}\right)^{-1}=\left(A^{2 \cdot 2^{n-2}}\right)^{-1}=\left(\left(A^{2}\right)^{2^{n-2}}\right)^{-1}=\left(\left(A^{-1}\right)^{-1}\right)^{2^{n-2}}=A^{2^{(n-2)}}$
so $\quad B=C \Rightarrow \quad A, B, C$ are answers ]
7. $(\hat{i}+\hat{j}) \times(\hat{j}+\hat{k})=\hat{i}-\hat{j}+\hat{k} \Rightarrow$ unit vector perpendicular as to the plane of $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is $\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$ similarly other two unit vectors are
$\frac{1}{\sqrt{3}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$ and $\frac{1}{\sqrt{3}}(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}) \Rightarrow V=\left[\hat{\mathrm{n}}_{1} \hat{\mathrm{n}}_{2} \hat{\mathrm{n}}_{3}\right]=\frac{1}{3 \sqrt{3}}\left|\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right|=\frac{4}{3 \sqrt{3}}$
Alternatively: Let $\vec{a}=\hat{i}+\hat{j} ; \vec{b}=\hat{j}+\hat{k} \quad \& \vec{c}=\hat{k}+\hat{i}$.
Now $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}=\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right|^{2}=[1(1)-1(0-1)]^{2}=4$
Hence actual volume with unit vectors $=\frac{4}{|\vec{a} \times \vec{b}||\vec{b} \times \vec{c}||\vec{c} \times \vec{a}|}$
Now $|\mathrm{a} \times \overrightarrow{\mathrm{b}}|=\sqrt{\overrightarrow{\mathrm{a}}^{2} \overrightarrow{\mathrm{~b}}^{2}-(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})^{2}}=\sqrt{4-1}=\sqrt{3}$ etc $\left.\mathrm{V}_{\text {actual }}=\frac{4}{3 \sqrt{3}}\right]$
8. $L=\operatorname{Lim}_{n \rightarrow \infty} n \int_{0}^{\pi / 2}(1-\sqrt[n]{\sin x}) d x$; put $n=\frac{1}{t}$

$$
=\operatorname{Lim}_{t \rightarrow 0^{+}} \int_{0}^{\pi / 2}\left(\frac{1-(\sin x)^{t}}{t}\right) d x ; \quad L=\operatorname{Lim}_{t \rightarrow 0} \int_{0}^{\pi / 2}\left(\frac{1-e^{t \ln (\sin x)}}{t \ln (\sin x)} \cdot \ln (\sin x)\right) d x
$$

but $\operatorname{Lim}_{t \rightarrow 0} \frac{1-e^{t \ln (\sin x)}}{t \ln (\sin x)}=-1 ; \quad \therefore \quad L=-\int_{0}^{\pi / 2} \ln (\sin x) d x=\frac{\pi}{2} \ln 2$ Ans. ]
11-12. Point $P$ is $(1,2)$
Tangent is $2 y=2(x+1)$
i.e. $\quad y=x+1$
hence image of $y^{2}=4 x$ in (2) can be written as

$$
(x+1)^{2}=4(y-1)
$$

(C)

Find the image of $\left(t^{2}, 2 t\right)$ in the tangent line and then eliminate $t$ to get the image

$$
\begin{aligned}
\text { Area } & \left.=\int_{0}^{2}\left[\frac{y^{2}}{4}-(y-1)\right] d y=\frac{y^{3}}{12}-\frac{y^{2}}{2}+y\right]_{0}^{2} \\
& \left.=\frac{8}{12}-2+2=\frac{2}{3} \quad \Rightarrow \quad \text { (A) }\right]
\end{aligned}
$$


13. $y=e^{a+b x^{2}}$, passes through $(1,1)$
$1=e^{a+b} \Rightarrow a+b=0$
also $\left.\quad \frac{d y}{d x}\right|_{(1,1)}=-2$
$\left.\begin{array}{ll} & e^{a+b x^{2}} \cdot 2 b x=-2 \\ \Rightarrow \quad & e^{a+b} \cdot 2 b(1)=-2 \\ \Rightarrow \quad & b=-1 \text { and } a=1 \\ \Rightarrow \quad & (a, b)=(1,-1) \\ & \\ \text { hence } & C_{1}:(x-6)^{2}+(y+1)^{2}=(\sqrt{3})^{2} \\ & \left.C_{2}:(x-6)^{2}+(y-11)^{2}=(3 \sqrt{3})^{2}\right]\end{array}\right] \begin{aligned} & C_{1} \& C_{2} \\ & \\ & \end{aligned}$
$A B^{2}=\ell^{2}=d^{2}-\left(r_{1}+r_{2}\right)^{2}=169-(4 \sqrt{3})^{2}=121$
$A B=11$ Ans.

14. again $f^{\prime}(x)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} ; f(1)=1$
$=\frac{f(x)\left[\frac{f(x+h)}{f(x)}-1\right]}{h}=\frac{f(x)}{x} \operatorname{Lim}_{h \rightarrow 0}\left[\frac{f\left(1+\frac{h}{x}\right)-1}{\frac{h}{x}}\right]=\frac{f^{\prime}(1) \cdot f(x)}{x}=\frac{2 f(x)}{x}\left(\right.$ as $f(1)=f^{2}(1)$ but $f(1) \neq 0$
$\Rightarrow \quad \mathrm{f}(1)=1)$
$\frac{f^{\prime}(x)}{f(x)}=\frac{2}{x}$
$\ln (f(x))=2 \ell n x+C$
$x=1, f(1)=1 \Rightarrow C=0$
$f(x)=x^{2}$
$\left.\therefore \quad I=\int_{b}^{a} f(x) d(\ell n x)=\int_{-1}^{1} x^{2} d(\ell n x)=\int_{1 / e}^{e} x d x=\frac{x^{2}}{2}\right]_{1 / e}^{e}=\frac{e^{2}-e^{-2}}{2}$ Ans.
17. $I=\int_{0}^{\pi / 2} f(\sin \theta) \cos \theta d \theta$
$I=\int_{0}^{\pi / 2} f(\cos \theta) \sin \theta d \theta$
$2 I=\int_{0}^{\pi / 2}(f(\sin \theta) \cos \theta+f(\cos \theta) \sin \theta) d \theta \leq \int_{0}^{\pi / 2} 1 d \theta=\frac{\pi}{2}$
18. (A), (B) (C) and (D) are correct
(B) $\quad f(x)=\left[\begin{array}{lll}1 & \text { if } & x \in Q \\ -1 & \text { if } & x \notin Q\end{array}\right.$ then $\left.|f(x)|=1 \forall x\right]$
(B)
19. (A)

(B)
(C)

$\mathrm{f} \& \mathrm{~g}$ touch each other.
(D) If we pull down the graph of $g(x)$ in (C) slightly down, there will be two solutions.
20. $f(x)=x^{3}-x^{2}+100 x+2002$
$f^{\prime}(x)=3 x^{2}-2 x+100>0 \quad \forall x \in R$
$\therefore \quad f(x)$ is increasing (strictly)
$\therefore \quad f\left(\frac{1}{2000}\right)>f\left(\frac{1}{2001}\right)$
Also $\quad f(x-1)>f(x-2)$ as $x-1>x-2$ for $\forall x]$
21. $\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$
$\Rightarrow \quad(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$
Now ( $\vec{c} \cdot \overrightarrow{\mathrm{c}}) \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}}$
$\Rightarrow \quad(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}})(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{c}})=(\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{c}})$
$\Rightarrow \quad \vec{a} \cdot \vec{c}=1$
$\Rightarrow \quad 1+\vec{a} \cdot \vec{b}=4-2 x-\sin y, x^{2}-1=-(\vec{a} \cdot \vec{b})$
$\Rightarrow \quad 1=4-2 x-\sin y+x^{2}-1$
$\Rightarrow \quad$ sin $y=x^{2}-2 x+2=(x-1)^{2}+1$
But $\sin y \leq 1$, therefore $x=1$, siny $=1$
$\Rightarrow \quad y=(4 n+1) \frac{\pi}{2}, n \in I$
22. Let $Z=a+i b, b \neq 0$ where $\operatorname{lm} Z=b$
$Z^{5}=(a+i b)^{5}=a^{5}+{ }^{5} C_{1} a^{4} b i+{ }^{5} C_{2} a^{3} b^{2} i^{2}+{ }^{5} C_{3} a^{2} b^{3} i^{3}+{ }^{5} C_{4} a b^{4} i^{4}+i^{5} b^{5}$
Im $Z^{5}=5 a^{4} b-10 a^{2} b^{3}+b^{5}$
$y=\frac{\operatorname{Im} Z^{5}}{\operatorname{Im}^{5} Z}=5\left(\frac{a}{b}\right)^{4}-10\left(\frac{a}{b}\right)^{2}+1$
Let $\quad\left(\frac{a}{b}\right)^{2}=x \quad$ (say), $x \in R^{+}$
$y=5 x^{2}-10 x+1=5\left[x^{2}-2 x\right]+1=5\left[(x-1)^{2}\right]-4$
Hence $y_{\text {min }}=-4$ Ans.]
25. $\frac{d y}{d x}=\frac{(y-x) \pm \sqrt{(x-y)^{2}+4 x y}}{2 y}$
$\Rightarrow \quad \frac{d y}{d x}=1 \quad$ or $\left.\quad \frac{d y}{d x}=-\frac{x}{y} \quad\right]$
27.2

$$
\begin{aligned}
& \mathrm{y}+\mathrm{t}_{1} \mathrm{x}=2 \mathrm{at}_{1}+\mathrm{at}_{1}{ }^{3} \\
& \Rightarrow 2 \mathrm{at}_{2}+\mathrm{at} t_{1} \mathrm{t}_{2}{ }^{2}=2 \mathrm{t}_{1}+a \mathrm{t}_{1}{ }^{3} \\
& \Rightarrow 2 \mathrm{t}_{2}+\mathrm{t}_{1} \mathrm{t}_{2}{ }^{2}=2 \mathrm{t} 1+\mathrm{t}_{1}{ }^{3} \\
& \text { also } \mathrm{m}_{1} \times \mathrm{m}_{2}=-1 \\
& \quad \frac{2}{\mathrm{t}_{1}}+\frac{2}{\mathrm{t}_{2}}=-1 \quad \Rightarrow \quad \mathrm{t}_{2}=-\frac{4}{\mathrm{t}_{1}} \\
& \Rightarrow-\frac{8}{\mathrm{t}_{1}}+\frac{16}{\mathrm{t}_{1}}=2 \mathrm{t}+\mathrm{t}_{1}{ }^{3} \\
& \Rightarrow \mathrm{t}_{1}{ }^{4}+2 \mathrm{t}_{1}{ }^{2}-8=0 \\
& \Rightarrow \quad\left(\mathrm{t}_{1}{ }^{2}+4\right)\left(\mathrm{t}_{1}{ }^{2}-2\right)=0 \\
& \Rightarrow \mathrm{t}_{1}{ }^{2}=2
\end{aligned}
$$

28. 2

Since the x -axis and y -axis are two perpendicular tangents to the parabola and both meet at the origin, the directrix passes through the origin.


Let $y=m x$ be the directrix and $(h, k)$ be the focus. $F A=A M$

$$
\begin{equation*}
\Rightarrow \quad \sqrt{(\mathrm{h}-1)^{2}+\mathrm{k}^{2}}=\left|\frac{\mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}}\right| \tag{1}
\end{equation*}
$$

and $\mathrm{FB}=\mathrm{BN}$

$$
\begin{equation*}
\Rightarrow \quad \sqrt{\mathrm{h}^{2}+(\mathrm{k}-1)^{2}}=\left|\frac{\mathrm{m}}{\sqrt{1+\mathrm{m}^{2}}}\right| \tag{2}
\end{equation*}
$$

From equations (1) and (2), we get

$$
(h-1)^{2}+h^{2}+k^{2}+(k-1)^{2}=1
$$

$\Rightarrow \quad 2 x^{2}-2 x+2 y^{2}-2 y+1=0 \quad$ is the required locus. ]
29. Ans. 3
$f(x)=\left[\begin{array}{ll}a \cos x+b \sin x & \text { if } 0 \leq x \leq \frac{\pi}{2} \\ a \cos x-b \sin x & \text { if }-\frac{\pi}{2} \leq x \leq 0\end{array}\right.$
[Ans. $a=-\frac{1}{\sqrt{\pi+\sqrt{3}}} ; b=-\frac{\sqrt{3}}{\sqrt{\pi+\sqrt{3}}}$ ]
for $\quad-\pi / 2<x<0$

$$
\begin{equation*}
f^{\prime}(x)=-a \sin x-b \cos x \tag{1}
\end{equation*}
$$

and $\quad f^{\prime \prime}(x)=-a \cos x+b \sin x$
since $f(x)$ has a minima at $x=-\pi / 3$
hence $f^{\prime}(-\pi / 3)=0$ and $f^{\prime \prime}(-\pi / 3)>0$
now $\quad f^{\prime}(-\pi / 3)=+a \cdot \frac{\sqrt{3}}{2}-\frac{b}{2}=0=\sqrt{3} a-b=0$
and $\quad f^{\prime \prime}(-\pi / 3)=-\frac{a}{2}-b \cdot \frac{\sqrt{3}}{2}=-\frac{1}{2}[a+b \sqrt{3}]=-2 a>0$
hence $\mathrm{a}<0$ and $\mathrm{b}<0$
now $\quad I=\int_{-\pi / 2}^{\pi / 2}(f(x))^{2} d x=\int_{-\pi / 2}^{0} f^{2}(x) d x+\int_{0}^{\pi / 2} f^{2}(x) d x$

$$
=\int_{-\pi / 2}^{0}\left(a^{2} \cos ^{2} x-2 a b \sin x \cos x+b^{2} \sin ^{2} x\right) d x+\int_{0}^{\pi / 2}\left(a^{2} \cos ^{2} x+2 a b \sin x \cos x+b^{2} \sin ^{2} x\right) d x
$$

hence $\mathrm{I}=\frac{\pi \mathrm{a}^{2}}{2}+\frac{\pi \mathrm{b}^{2}}{2}+2 \mathrm{ab}=2$

$$
2(\sqrt{3}+\pi) \mathrm{a}^{2}=2 \quad \Rightarrow \quad \mathrm{a}=-\frac{1}{\sqrt{\pi+\sqrt{3}}} \text { and } \mathrm{b}=-\frac{\sqrt{3}}{\sqrt{\pi+\sqrt{3}}} \text { Ans. ] }
$$

31. 8

Put $4 \sqrt{\cos \frac{x}{2}}-5-\frac{\sqrt{2}}{2}=y$ and form a quadratic in $y$. Solve it for $y$.
Ans. : $x=4 n \pi, n \in I$
32. Ans 4
$\left|\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ {[\mathrm{x}]} & {[\mathrm{y}]} & \mathrm{cz}]+1\end{array}\right|$
solving $=[x]+[y]+[z]+1$
taking maximum value we get 4
note that [ x ] is always an integer. ] [Ans. 1]
33. Equation of normal is
$Y-y=-\frac{1}{m}(X-x)$
$X+m Y-(x+m y)=0$
Perpendicular distance from $(0,0)$ to equation (1) is


$\left|\frac{x+m y}{\sqrt{1+\mathrm{m}^{2}}}\right|=|\mathrm{y}|$
$\Rightarrow(x+m y)^{2}=y^{2}\left(1+m^{2}\right) \Rightarrow x^{2}+2 m x y=y^{2} \Rightarrow m=\frac{y^{2}-x^{2}}{2 x y} \Rightarrow 2 x y \frac{d y}{d x}=y^{2}-x^{2}$
Put $\mathrm{y}^{2}=\mathrm{t} \Rightarrow 2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dt}}{\mathrm{dx}}$
$\therefore \quad$ Equation (2) becomes

$$
\begin{aligned}
& x \frac{d t}{d x}=t-x^{2} \Rightarrow \quad \frac{d t}{d x}-\frac{1}{x} t=-x \\
& \therefore \quad \quad \text { I.F. }=e^{-\int \frac{1}{x} d x}=e^{-\ln x}=\frac{1}{x}
\end{aligned}
$$

Now general solution is given by

$$
t\left(\frac{1}{x}\right)=-x+C \quad \Rightarrow \quad y^{2}\left(\frac{1}{x}\right)=-x+C
$$

As $(1,1)$ satisfy it, so $C=2$
$\Rightarrow \quad y^{2}=-x^{2}+2 x \quad \Rightarrow \quad x^{2}+y^{2}-2 x=0$
Hence required area $=\frac{\mathrm{k} \pi}{2}$
$\therefore \quad \mathrm{k}=1$ Ans. ]

