MATHEMATICS Target IIT-JEE 2016
 Class XI

Straight Line

VKR SIR
 B. Tech., IIT Delhi

C 339-340, Near Global Public School, Indra Vihar, Kota. Ph.: 0744-2427485, Mobile: 9887013221
visit : www.vkrclasses.com

STRAIGHT LINE

A. Rectangular (Cartesian) Coordinates in a Plane

Let us draw in the plane two mutually perpendicular intersecting lines $O x$ and $O y$ which are termed coordinate axes. The point of intersection O of the two axes is called the origin of coordinates, or simply the origin. It divides each of the axes into two semi-axes. One of the semiaxes is conventionally called positive (indicated by an arrow in the drawing), the other being negative.
Any point Ain a plane is specified by a pair of numbers called the rectangular coordinates of the point A - the abscissa (x) and the ordinate (y) according to the following rule.
Through the point A we draw a straight line parallel to the axis of ordinates (Oy) to intersect the axis of abscissas ($O x$) at some point A_{x}. The abscissa of the point A should be understood as a number x whose absolute value is equal to the distance from O to A_{x} which is positive if A_{x} belongs to the positive semi-axis and negative if A_{x} belongs to the negative semi-axis. If the point A_{x} coincides with the origin, then we put x equal to zero.

The ordinate (y) of the point A is determined in a similar way.
We shall use the following notation : $\mathrm{A}(\mathrm{x}, \mathrm{y})$ which means that the coordinates of the point A are x (abscissa) and y (ordinate).
Ex. 1 ABCD is a square, having it's vertices A and B on the positive x and y axis respectively. Given that $C \equiv(12,17)$, find the coordinates of all the vertices.
Sol. Let the side length of the square be ' a ' and $\angle B A Q=\theta$
$\Rightarrow \quad \angle C_{1} B C=\angle D_{1} D A=\theta$
$\Rightarrow \quad A \equiv(a \cos \theta, 0), B \equiv(0, a \sin \theta)$
$C \equiv(a \sin \theta, a \sin \theta+a \cos \theta)$ and
$D \equiv(a \cos \theta+a \sin \theta, a \cos \theta)$
Thus, $a \sin \theta=12$, $a \sin \theta+a \cos \theta=17$
$\Rightarrow \quad a \cos \theta=5$
$\Rightarrow \quad A \equiv(5,0), B \equiv(0,12), C \equiv(12,17), D \equiv(17,5)$.

B. Polar Coordinates

In this system of coordinates the position of a point is determined by its distance from a fixed point O, usually called the pole (though it might equally well be called the origin), and the angle which the line joining the pole to the point makes with a fixed line through the pole, called the initial line. Thus if $O A$ be the initial line, the polar coordinates of a point P are $O P$ which is known as the radius vector, and the angle AOP which is called the vectorial angle. The vectorial angle is measured from the initial lines as in Trigonometry ; it is usually considered positive if measured round from OA in the opposite direction to that of the rotation of the hands of a watch, and negative in the other direction. But it may on occasion be more convenient to take to rotation positive in the same direction as that of the hands of a watch. To mark a point whose polar coordinates (r, θ) are given, we first measure the vectorial angle θ and then cut off the radius vector ($=r$). The extremity P of this is the point (r, θ).

Formulae connecting the Polar and Cartesian coordinates of a point.
It is to be understood in what follows that the pole and the initial line in the polar system are respectively the origin and the axis of x in the Cartesian system, and the positive direction of measurement of the vectorial angle is towards the axis of y.
Let (x, y) be the Cartesian co-ordinates of a point $P,(r, \theta)$ its polar coordinates.
First, let the Cartesian axes be rectangular.
We have $\quad x=r \cos \theta, \quad y=r \sin \theta$,
and these formulae hold in whichever quadrant P may be.
From the above we have $\quad r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}$,
Ex. 2 Change to polar co-ordinates the equation $\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$.
Sol. The given equation is $\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$ or $\left(r^{2}\right)^{2}=a^{2}\left(r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta\right)$
or $\quad r^{4}=a^{2} r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \quad$ or $\quad r^{2}=a^{2} \cos 2 \theta$.
Ex. 3 Transform to Cartesian co-ordinates the equation $r(\cos 3 \theta+\sin 3 \theta)=5 k \sin \theta \cos \theta$.
Sol. The given equation is $\quad r(\cos 3 \theta+\sin 3 \theta)=5 k \sin \theta \cos \theta$
or $\quad r\left(4 \cos ^{3} \theta-3 \cos \theta+3 \sin \theta-4 \sin ^{3} \theta\right) 5 k \sin \theta \cos \theta$
or $\quad 4 r\left(\cos ^{3} \theta-\sin ^{3} \theta\right)-3 r(\cos \theta-\sin \theta)=5 k \sin \theta \cos \theta$
Multiplying both sides by r^{2}, we get

$$
4\left(r^{3} \cos ^{3} \theta-r^{3} \sin ^{3} \theta\right)-3 r^{2}(r \cos \theta-r \sin \theta)=5 k r \sin \theta \cdot r \cos \theta
$$

or $\quad 4\left(x^{3}-y^{3}\right)-3\left(x^{2}+y^{2}\right)(x-y)=5 k . y x$
or $\quad 4 x^{3}-4 y^{3}-3 x^{3}+3 x^{2} y-3 y^{2} x+3 y^{3}=5 k x y$
or $\quad x^{3}+3 x^{2} y-3 x y^{2}-y^{3}=5 k x y$.
Ans.

C. Distance Formula

The distance between the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.
Section Formula :
If $P(x, y)$ divides the line joining $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right)$ in the ratio $m: n$, then ;
$\mathrm{x}=\frac{\mathrm{mx} \mathrm{x}_{2}+\mathrm{nx}}{\mathrm{m}+\mathrm{n}} ; \mathrm{y}=\frac{\mathrm{my} \mathrm{y}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}$
If $\frac{\mathrm{m}}{\mathrm{n}}$ is positive, the division is internal, but if $\frac{\mathrm{m}}{\mathrm{n}}$ is negative, the division is external.
Note: If P divides $A B$ internally in the ratio $m: n \& Q$ divides $A B$ externally in the ratio $m: n$ then $P \& Q$ are said to be harmonic conjugate of each other w.r.t. $A B$.
Mathematically $; \frac{2}{\mathrm{AB}}=\frac{1}{\mathrm{AP}}+\frac{1}{\mathrm{AQ}}$ i.e. $\mathrm{AP}, \mathrm{AB} \& A Q$ are in H.P.

Centroid and Incentre :

If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are the vertices of triangle $A B C$, whose sides $B C, C A, A B$ are of lengths a, b, c respectively, then the coordinates of the centroid are :
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$ \& the coordinates of the incentre are ;
$\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$
Note that incentre divides the angle bisectors in the ratio $(b+c): a ;(c+a): b \&(a+b): c$.

Note :

(i) Orthocentre, Centroid \& circumcentre are always collinear \& centroid divides the line joining orthocentre \& cercumcentre in the ratio $2: 1$.
(ii) In an isosceles triangle incentre,orthocentre, centroid \& circumcentre lie on the same line.

Ex. 4 The line joining the points $(1,-2)$ and $(-3,4)$ is trisected: find the co-ordinates of the points of trisection.
Sol. Let the points $(1,-2)$ and $(-3,4)$ be A and B respectively. If P and Q be the points of trisection of $A B$, the ratio $A P: P B$ will be equal to $1: 2$ and the ratio $A Q$: $Q B$ will be equal to $2: 1$. Hence the co-ordinates of P are

$$
\left[\frac{(1 \times-3)+(2 \times 1)}{1+2}, \frac{(1 \times 4)+(2 \times-2)}{1+2}\right] \text { or }\left(-\frac{1}{3}, 0\right)
$$

Co-ordinates of Q are

$$
\left[\frac{(2 \times-3)(1 \times 1)}{2+1}, \frac{(2 \times 4)+(1 \times-2)}{2+1}\right] \text { or }\left(-\frac{5}{3}, 2\right)
$$

Ex. 5 Find the coordinates of the point which divides the line segment joining the points $(6,3)$ and $(-4,5)$ in the ratio $3: 2$ internally and (ii) externally.
Sol. Let $P(x, y)$ be the required point.
(i) For internal division:

$$
x=\frac{3 x-4+2 \times 6}{3+2} \text { and } y=\frac{3 \times 5+2 \times 3}{3+2} \text { or } x=0 \text { and } y=\frac{21}{5}
$$

So the coordinates of P are $\left(0, \frac{21}{5}\right)$ Ans.
(ii) For external division

$$
\mathrm{x}=\frac{3 \times-4-2 \times 6}{3-2} \text { and } \mathrm{y}=\frac{3 \times 5-2 \times 3}{3-2}
$$

or $\quad x=-24$ and $y=9$
So the coordinates of P are $(-24,9)$ Ans.
Ex. 6 Find the coordinates of (i) centroid (ii) in-centre of the triangle whose vertices are $(0,6),(8,12)$ and $(8,0)$.
Sol.
(i) We know that the coordinates of the centroid of a triangle whose angular points are $\left(x_{1}, y_{1}\right)$, $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ are

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

So the coordinates of the centroid of a triangle whose vertices are $(0,6),(8,12)$ and $(8,0)$ are $\left(\frac{0+8+8}{3}, \frac{6+12+0}{3}\right)$ or $\left(\frac{16}{3}, 6\right) \quad$ Ans.
(ii) Let $\mathrm{A}(0,6), \mathrm{B}(8,12)$ and $\mathrm{C}(8,0)$ be the vertices of triangle ABC .

$$
\text { Then } \mathrm{c}=\mathrm{AB}=\sqrt{(0-8)^{2}+(6-12)^{2}}=10, \mathrm{~b}=\mathrm{CA}=\sqrt{(0-8)^{2}+(6-0)^{2}}=10
$$

and

$$
a=B C=\sqrt{(8-8)^{2}+(12-0)^{2}}=12
$$

The co-ordinates of the in-centre are $\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)$
or $\left(\frac{12 \times 0+10 \times 8+10 \times 8}{12+10+10}, \frac{12 \times 6+10 \times 12+10 \times 0}{12+10+10}\right)$
or $\left(\frac{160}{32}, \frac{192}{32}\right)$ or $(5,6)$ Ans.

Ex. 7 The co-ordinates of the vertices of a triangle are $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$. The line joining the first two is divided in the ratio $I: k$, and the line joining this point of division to the opposite angular point is then divided in the ratio $\mathrm{m}: \mathrm{k}+\mathrm{I}$. Find the co-ordinates of the latter point of section.
Sol. The co-ordinates of the vertices are given to be $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$. Let these points be A, B and C respectively. The co-ordinates of the point P which divides $A B$ in the ratio $I: k$ will be

The co-ordinates of the point Q which divides the join of P and C in the ratio $m:(k+l)$ will be

$$
\left\{\frac{\mathrm{mx}_{3}+(\mathrm{k}+\mathrm{l}) \frac{\mathrm{l} \mathrm{x}_{2}+\mathrm{kx}}{1} \frac{\left.\mathrm{l}_{1}+\mathrm{k}\right)}{\mathrm{m}+\mathrm{l}+\mathrm{k}}, \frac{\mathrm{my}_{3}+(\mathrm{k}+\mathrm{l}) \frac{\mathrm{ly} \mathrm{y}_{2}+\mathrm{ky}}{1}}{(\mathrm{l}+\mathrm{k})}}{\mathrm{m}+\mathrm{l}+\mathrm{k}}\right\}
$$

$$
\text { or } \quad\left(\frac{\mathrm{kx}_{1}+\mathrm{lx}_{2}+\mathrm{mx}_{3}}{\mathrm{k}+\mathrm{l}+\mathrm{m}}, \frac{\mathrm{ky}_{1}+\mathrm{ly}_{2}+\mathrm{my}_{3}}{\mathrm{k}+\mathrm{l}+\mathrm{m}}\right)
$$

Ex. 8 The quadratic equations, $a x^{2}+b x+c=0 \& A x^{2}+B x+C=0$ have roots x_{1}, x_{2} and x_{3}, x_{4}. If the points $\left(x_{1}, 0\right)$ and ($x_{2}, 0$) divide the line joining $\left(x_{3}, 0\right) \&\left(x_{4}, 0\right)$ internally and externally in the same ratio then show that, $2(c A+C a)=b B$.

Sol. $x_{1}+x_{2}=-\frac{b}{a} ; x_{1} x_{2}=\frac{c}{a} \quad x_{3}+x_{4}=-\frac{B}{A} ; x_{3} x_{4}=\frac{C}{A}$

$$
\begin{aligned}
& \mathrm{x}_{1}=\frac{\lambda \mathrm{x}_{4}+\mathrm{x}_{3}}{\lambda+1} \Rightarrow \lambda \mathrm{x}_{4}+\mathrm{x}_{3}=(\lambda+1) \mathrm{x}_{3} ; \quad \mathrm{x}_{1}=\frac{\lambda \mathrm{x}_{4}-\mathrm{x}_{3}}{\lambda-1} \Rightarrow \lambda \mathrm{x}_{4}-\mathrm{x}_{3}=(\lambda-1) \mathrm{x}_{2} \\
& \therefore \lambda\left(\mathrm{x}_{4}-\mathrm{x}_{1}\right)=\mathrm{x}_{4}-\mathrm{x}_{3} ;
\end{aligned} \quad \lambda\left(\mathrm{x}_{4}-\mathrm{x}_{2}\right)=\mathrm{x}_{3}-\mathrm{x}_{2} \quad l l
$$

dividing cross multiplying and rearranging, $\left.2\left(x_{1} x_{2}+x_{3} x_{4}\right)=\left(x_{3}+x_{4}\right)\left(x_{1}+x_{2}\right)\right]$
Slope of a Line :
If θ is the angle at which a straight line is inclined to the positive direction of x-axis, \& $0^{\circ} \leq \theta<180^{\circ}, \theta \neq 90^{\circ}$, then the slope of the line, denoted by m , is defined by $\mathrm{m}=\tan \theta$. If θ is $90^{\circ}, \mathrm{m}$ does not exist, but the line is parallel to the y-axis.
If $\theta=0$, then $\mathrm{m}=0$ \& the line is parallel to the x-axis.
If $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right), x_{1} \neq x_{2}$, are points on a straight line, then the slope m of the line is given by: $m=\left(\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\right)$.

Area of a Triangle :

If $\left(x_{i}, y_{i}\right), i=1,2,3$ are the vertices of a triangle, then its area is equal to $\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$, provided the vertices are considered in the counter clockwise sense. The above formula will give a $(-)$ ve area if the vertices $\left(x_{i}, y_{i}\right), i=1,2,3$ are placed in the clockwise sense.

Condition Of Collinearity Of Three Points - (Slope Form) :
Points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are collinear if $\left(\frac{y_{1}-y_{2}}{x_{1}-x_{2}}\right)=\left(\frac{y_{2}-y_{3}}{x_{2}-x_{3}}\right)$.

The points $\left(x_{i}, y_{i}\right), i=1,2,3$ are collinear if $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$.
Ex. 9 If the coordinates of two points A and B are $(3,4)$ and $(5,-2)$ respectively. Fnd the coordinates of any point P if $A P=P B$ and Area of $\triangle P A B=10$.
Sol. Let the coordinates of P be (x, y). Then
$P A=P B \quad \Rightarrow \quad P A^{2}=P B^{2} \quad \Rightarrow \quad(x-3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2}$

$$
\Rightarrow \quad x-3 y-1=0
$$

Now, Area of $\triangle \mathrm{PAB}=10 \quad \Rightarrow \quad \frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ 3 & 4 & 1 \\ 5 & -2 & 1\end{array}\right|= \pm 10 \Rightarrow 6 x+2 y-26= \pm 20$
$\Rightarrow \quad 6 x+2 y-46=0 \quad$ or $\quad 6 x+2 y-6=0$
$\Rightarrow \quad 3 \mathrm{x}+\mathrm{y}-23=0$ or $\quad 3 \mathrm{x}+\mathrm{y}-3=0$
Solving $x-3 y-1=0$ and $3 x+y-23$ we get $x=7, y=2$. Solving $x-3 y-1=0$ and $3 x+y-3=0$, we get $x=1, y=0$. Thus, the coordinates of P are $(7,2)$ or $(1,0) \quad$ Ans.

Ex. 10 Triangle ABC lies in the Cartesian plane and has an area of 70 sq. units. The coordinates of B and C are $(12,19)$ and $(23,20)$ respectively and the coordinates of A are (p, q). The line containing the median to the side BC has slope -5 . Find the largest possible value of $(p+q)$.

Sol. $\frac{(39 / 2)-\mathrm{q}}{(35 / 2)-\mathrm{p}}=-5$
$39-2 q=-5(35-2 p)$
$39-2 q=-175+10 p$
i.e. $5 \mathrm{p}+\mathrm{q}=107$

Also,

i.e.

	$11 q-p=337$	$11 q-p=57$
Also	$\underbrace{5 p+q=107}$	$\underbrace{5 p+q=107}$
	solving	solving
\therefore	$p=15 \& q=32$	$\mathrm{p}=20$ \& $\mathrm{q}=7$
So,	$p+q=47$	$p+q=27$

Hence, largest possible value $=47$

Ex. 11 A square $A B C D$ lying in l-quadrant has area 36 sq. units and is such that its side $A B$ is parallel to x-axis. Vertices A, B and C are on the graph of $y=\log _{2} x, y=2 \log _{a} x$ and $y=3 \log _{2} x$ respectively then find the value of ' a '.
Sol. $A B: y=c(c>0)$
Length of the side of square $=6$
A has y -coordinate $=\mathrm{c}$ and it lies on $\mathrm{y}=\log _{\mathrm{a}} \mathrm{x}$
$\therefore \quad \mathrm{x}$-coordinate $=\mathrm{a}^{\mathrm{c}}$
$\therefore \quad$ point A is $\left(\mathrm{a}^{\mathrm{c}}, \mathrm{c}\right)$
Il|ly $\quad B$ is $\left(a^{c / 2}, c\right)$
and $B C \perp A B$

$\therefore \quad$ Chas x -coordinate $=\mathrm{a}^{\mathrm{c} / 2}$ and it lies on $\mathrm{y}=3 \log _{\mathrm{a}} \mathrm{x}$
(rejected)

$$
\begin{array}{lllll}
\therefore & \mathrm{t}=3 \Rightarrow & \mathrm{a}^{\mathrm{c} / 2}=3 & \Rightarrow & a^{c}=9 \\
\text { also } & |B C|=6 & \frac{3 c}{2}-c=6 ; & \therefore & c=12 \\
\therefore & a^{12}=9 \Rightarrow & a^{6}=3 ; & \therefore & a=\sqrt[6]{3}
\end{array}
$$

Ex. 12 The internal bisectors of the angles of a triangle $A B C$ meet the sides in D, E and F respectively. Show that the area of the triangle DEF is equal to

$$
\frac{2 \Delta a \mathrm{bc}}{(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a})} \text {, where } \Delta \text { denotes the area of the triangle } \mathrm{ABC} \text {. }
$$

Sol.

$$
\mathrm{D}\left(\frac{\mathrm{bx}_{2}+\mathrm{cx}_{3}}{\mathrm{~b}+\mathrm{c}}, \frac{\mathrm{by}_{2}+\mathrm{cy}_{3}}{\mathrm{~b}+\mathrm{c}}\right)
$$

$$
\begin{aligned}
& E\left(\frac{a x_{1}+c x_{3}}{a+c}, \frac{a y_{1}+c y_{3}}{a+c}\right) \\
& F\left(\frac{a x_{1}+b x_{2}}{a+b}, \frac{a y_{1}+b y_{2}}{a+b}\right)
\end{aligned}
$$

$$
\Delta \mathrm{DEF}=\frac{1}{2(\mathrm{a}+\mathrm{b})(\mathrm{b}+\mathrm{c})(\mathrm{c}+\mathrm{a})}\left|\begin{array}{lll}
\mathrm{ax}_{1}+\mathrm{cx}_{3} & \mathrm{ay}_{1}+\mathrm{cy}_{3} & \mathrm{a}+\mathrm{c} \\
\mathrm{bx} x_{2}+a x_{1} & \mathrm{by}_{2}+a y_{1} & \mathrm{~b}+\mathrm{a} \\
\mathrm{bx}_{2}+\mathrm{cx}_{3} & \mathrm{by}_{2}+\mathrm{cy}_{3} & \mathrm{~b}+\mathrm{c}
\end{array}\right|
$$

$$
=\frac{1}{2(a+b)(b+c)(c+a)}\left|\begin{array}{ccc}
a & c & 0 \\
a & 0 & b \\
0 & c & b
\end{array}\right|\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{3} & y_{3} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right| \Rightarrow \text { Result }
$$

Ex. 13 If the point $\left(\frac{a^{3}}{a-1}, \frac{a^{2}-3}{a-1}\right) ;\left(\frac{b^{3}}{b-1}, \frac{b^{2}-3}{b-1}\right) \&\left(\frac{c^{3}}{c-1}, \frac{c^{2}-3}{c-1}\right)$ are collinear for three distinct values of $a, b \& c$ then show that, $a b c-(a b+b c+c a)+3(a+b+c)=0$

$$
\begin{aligned}
& y=3 \log _{\mathrm{a}} \mathrm{a}^{\mathrm{c} / 2}=\frac{3 \mathrm{c}}{2} \quad \therefore \quad \text { point } \mathrm{C} \text { is }\left(\mathrm{a}^{\mathrm{c} / 2}, \frac{3 \mathrm{c}}{2}\right) \\
& |A B|=6 \quad \therefore \quad a^{c}-a^{c / 2}=6 \quad a>0, c>0 \\
& \text { let } a^{c / 2}=t \quad t^{2}-t-6=0 \quad \Rightarrow \quad(t-3)(t+2)=0 \quad \Rightarrow \quad t=3 \text { or } t=-2
\end{aligned}
$$

Sol. Let the given points lie on the line $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0 \Rightarrow I \frac{\mathrm{t}^{3}}{\mathrm{t}-1}+\mathrm{m} \frac{\mathrm{t}^{3}-3}{\mathrm{t}-1}+\mathrm{n}=0$
When $t=a, b, c$, this simplifies to $/ t^{3}+m t^{2}+n t-(3 m+n)=0$
$\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=-\frac{\mathrm{m}}{\ell} ; \mathrm{ab}+\mathrm{bc}+\mathrm{ca}=\frac{\mathrm{n}}{\ell} ; \mathrm{abc}=\frac{3 \mathrm{~m}+\mathrm{n}}{\ell} \Rightarrow$ result

Equation Of A Straight Line In Various Forms :

(i) Slope - intercept form : $y=m x+c$ is the equation of a straight line whose slope is m \& which makes an intercept c on the y-axis.
(ii) Slope one point form : y- $y_{1}=m\left(x-x_{1}\right)$ is the equation of a straight line whose slope is m \& which passes through the point ($\mathrm{x}_{1}, \mathrm{y}_{1}$).
(iii) Parametric form : The equation of the line in parametric form is given by
$\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r$ (say). Where ' r ' is the distance of any point (x, y) on the line from the fixed point $\left(x_{1}, y_{1}\right)$ on the line. r is positive if the point (x, y) is on the right of $\left(x_{1}, y_{1}\right)$ and negative if (x, y) lies on the left of $\left(x_{1}, y_{1}\right)$.
(iv) Two point form : $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$ is the equation of a straight line which passes through the points $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$.
(v) Intercept form : $\frac{x}{a}+\frac{y}{b}=1$ is the equation of a straight line which makes intercepts $a \& b$ on OX \& OY respectively.
(vi) Perpendicular form : $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$ is the equation of the straight line where the length of the perpendicular from the origin O on the line is p and this perpendicular makes angle α with positive side of x-axis.
(vii) General Form : $a x+b y+c=0$ is the equation of a straight line in the general form

Ex. 14 Find the equation of a line passing through $(2,-3)$ and iclined at an angle of 135° with the postive direction x -axis.
Sol. Here $m=$ slope of the line $=\tan 135^{\circ}=\tan \left(90^{\circ}+45^{\circ}\right)=-\cot 45^{\circ}=-1, x_{1}=2, y_{1}=-3$
So, the equation of the line is $y-y_{1}=m\left(x-x_{1}\right)$
i.e. $\quad y-(-3)=-1(x-2)$ or $y+3=-x+2$ or $x+y+1=0$ Ans.

Ex. 15 Find the equation of the line whish passes through the point $(3,4)$ and the sum of its intercepts on the axes is 14 .

Sol. Let the equation of the line by $\frac{x}{a}+\frac{y}{b}=1$
This passes through $(3,4)$, therefore $\frac{3}{a}+\frac{4}{b}=1$
It is given that $a+b=14 \Rightarrow 14-a$. Putting $b=14-a$ in (ii), we get $\frac{3}{a}+\frac{4}{14-a}=1$
$\Rightarrow \quad a^{2}-13 a+42=0$
$\Rightarrow \quad(a-7)(a-6)=0 \Rightarrow a=7,6$
for $a=7, b=14-7=7$ and for $a=6, b=14-6=8$.
Putting the values of a and b in (i), we get the equations of the lines

$$
\begin{aligned}
& \quad \frac{x}{7}+\frac{y}{7}=1 \text { and } \frac{y}{6}+\frac{y}{8}=1 \\
& \text { or } \quad x+y=7 \text { and } 4 x+3 y=24 \quad \text { Ans. }
\end{aligned}
$$

Ex. 16 Line $\frac{x}{6}+\frac{y}{8}=1$ intersects the x and y axes at M and N respectively. If the coordinates of the point P lying inside the triangle OMN (where 'O' is origin) are (a, b) such that the areas of the triangle POM, PON and PMN are equal. Find
(a) the coordinates of the point P and
(b) the radius of the circle escribed opposite to the angle N .

Sol. Note that ' P ' is the centroid of $\triangle \mathrm{OMN} \Rightarrow \mathrm{P}\left(2, \frac{8}{3}\right)$
and $r_{1}=\frac{\Delta}{(s-a)}$ where $\Delta=24 ; s=\frac{6+8+10}{2}=12 ; a=6$

Ex. 17 Three straight lines I_{1}, I_{2} and I_{3} have slopes $1 / 2,1 / 3$ and $1 / 4$ respectively. All three lines have the same y-intercept. If the sum of the x-intercept of three lines is 36 then find the y-intercept.
Sol. $\quad I_{1}: y=\frac{1}{2} x+c \quad \Rightarrow \quad x$-intercept is $-2 c$
$I_{2}: y=\frac{1}{3} x+c \quad \Rightarrow \quad x$-intercept is $-3 c$
$I_{3}: y=\frac{1}{4} x+c \quad \Rightarrow \quad x$-intercept is $-4 c$
$\therefore-2 c-3 c-4 c=36 \Rightarrow \quad-9 c=36 \quad \Rightarrow \quad c=-4$
Ex. 18 Find the equation to the straight line which passes through the point $(-4,3)$ and is such that the portion of it between the axes is divided by the point in the ratio $5: 3$.
Sol. Let the required straight line cuts the axes of x and y at $A(a, 0)$ and $B(0, b)$ respectively. Hence the co-ordinates of the point P which divides $A B$ in the ratio of $5: 3$ are given by

$$
x=\frac{3 a}{8} \text { and } y=\frac{5 b}{8}
$$

By hypothesis, co-ordinates of P are $(-4,3)$. Hence $\frac{3 a}{8}=-4$ and $\frac{5 b}{8}=3$ or $a=\frac{32}{-3}$ and $b=\frac{24}{5}$.
$\begin{array}{ll}\therefore & \text { The required equation } \\ \text { or } & 20 \mathrm{y}-9 \mathrm{x}=96 .\end{array}$
Ex. 19 Find the co-ordinates of the points of intersection of the straight lines, whose equations are x $\cos \phi_{1}+y \sin \phi_{1}=a$ and $x \cos \phi_{2}+y \sin \phi_{2}=a$.
Sol. The equation are

$$
\begin{array}{ll}
& x \cos \phi_{1}+y \sin \phi_{1}-a=0 \tag{1}\\
\text { and } & x \cos \phi_{2}+y \sin \phi_{2}-a=0
\end{array}
$$

...(2) By cross-multiplication

$$
\begin{aligned}
& \text { or } \frac{x}{a\left(\sin \phi_{2}-\sin \phi_{1}\right)}=\frac{y}{a\left(\cos \phi_{1}-\cos \phi_{2}\right)}=\frac{1}{\sin \left(\phi_{2}-\phi_{1}\right)} \\
& \text { or } \frac{x}{a 2 \cdot \cos \frac{1}{2}\left(\phi_{2}+\phi_{1}\right) \sin \frac{1}{2}\left(\phi_{2}-\phi_{1}\right)}=\frac{y}{a 2 \cdot \sin \frac{1}{2}\left(\phi_{1}+\phi_{2}\right) \sin \frac{1}{2}\left(\phi_{2}-\phi_{1}\right)} \\
& \qquad=\frac{1}{2 \cdot \sin \frac{1}{2}\left(\phi_{2}+\phi_{1}\right) \cos \frac{1}{2}\left(\phi_{2}-\phi_{1}\right)} \\
& \qquad x=\frac{\operatorname{acos} \frac{1}{2}\left(\phi_{2}+\phi_{1}\right)}{\cos \frac{1}{2}\left(\phi_{2}-\phi_{1}\right)}, y=\frac{\operatorname{asin} \frac{1}{2}\left(\phi_{1}+\phi_{2}\right)}{\cos \frac{1}{2}\left(\phi_{1}-\phi_{2}\right)}
\end{aligned}
$$

Ex. 20 Show that the centroid of the triangle of which the three altitudes to its sides lie on the line y $=m_{1} x ; y=m_{2} x \& y=m_{3} x$ lie on the line,

$$
y\left(m_{1} m_{2}+m_{2} m_{3}+m_{3} m_{1}+3\right)=\left(m_{1}+m_{2}+m_{3}+3 m_{1} m_{2} m_{3}\right) x .
$$

Sol. Equation of $B C y=-\frac{1}{m_{1}} x+c$
Solve with $y=m_{2} x \& y=m_{3} x$ to get the co-ordinates of B and C. Now equation of $A C$
with slope $-\frac{1}{\mathrm{~m}_{2}}$ and passing through C can be
known. Solve it with $y=m_{1} x$ to get $A . \quad$ Now compute $h \& k \Rightarrow y=\frac{k}{h} x$
Ex. 21 The opposite angular points of a square are $(3,4)$ and $(1,-1)$. Find the coordinates of the other two vertices.
Sol. Slope of $A C=\frac{5}{2}$;
Slope of $\mathrm{BD}=-\frac{2}{5}=\tan \theta$
$\therefore \quad \cos \theta=-\frac{5}{\sqrt{29}}, \quad \sin \theta=\frac{2}{\sqrt{29}}$
Length of $A C=\sqrt{29}=B D$ and mid-point E of $A C$ is $\left(2, \frac{3}{2}\right)$. Any line through E is

$$
\frac{x-2}{\cos \theta}=\frac{y-3 / 2}{\sin \theta}=r,-r
$$

where $r=\frac{1}{2} \sqrt{29}$
$x=r \cos \theta+2, y=r \sin \theta+3 / 2$
$x=\frac{1}{2} \sqrt{29}\left(-\frac{5}{\sqrt{29}}\right)+2, y=\frac{1}{2} \sqrt{29}, \frac{2}{\sqrt{29}}+\frac{3}{2}$
$B=(x, y)=\left(-\frac{1}{2}, \frac{5}{2}\right)$.
Writting - r for r in above, the point D is ($9 / 2,1 / 2$)
Ex. 22 Find the equation of the line through the point $A(2,3)$ and making an angle of 45° with the x-axis.
Also determine the length of intercept on it between A and the line $x+y+1=0$.
Sol. The equation of a line through A and making an angle of 45° with the x-axis is

$$
\frac{x-2}{\cos 45^{\circ}}=\frac{y-3}{\sin 45^{\circ}} \text { or } \frac{x-2}{\frac{1}{\sqrt{2}}}=\frac{y-3}{\frac{1}{\sqrt{2}}}
$$

or $\quad x-y+1=0$
Suppose this line meets the line $x+y+1=0$ at P such that $A P=r$. Then the coordinates of the P are given by

$$
\begin{aligned}
& \frac{x-2}{\cos 45^{\circ}}=\frac{y-3}{\sin 45^{\circ}}=r \Rightarrow \quad x=2+r \cos 45^{\circ}, y=3+r \sin 45^{\circ} \\
\Rightarrow \quad & x=2+\frac{r}{\sqrt{2}}, y=3+\frac{r}{\sqrt{2}}
\end{aligned}
$$

Thus the coordinates of P are $\left(2+\frac{r}{\sqrt{2}}, 3+\frac{r}{\sqrt{2}}\right)$
Since P lies on $x+y+1=0$, so $2+2+\frac{r}{\sqrt{2}}, 3+\frac{r}{\sqrt{2}}+1=0$
$\Rightarrow \quad \sqrt{2} r=-6 \Rightarrow r=-3 \sqrt{2} \quad \Rightarrow \quad$ length $A P=|r|=3 \sqrt{2}$
Thus, the length of the intercept $=3 \sqrt{2}$
Ans.

Ex. $23 A$ and B are two fixed points whose co-ordinates respectively are $(3,2)$ and $(5,1)$. $A B P$ is an equilateral triangle on AB situated on the side opposite to that of origin. Find the co-ordinates of P and those of the orthocentre of triangle ABP.
Sol. Equation of $A B$ is $x+2 y=7$ and its length $a=\sqrt{5}$, and mid-point of $A B$ is the point $L(4,3 / 2)$. If P be the vertex of the equilateral triangle then its perpendicular distance p from $A B$ is a $\sin 60^{\circ}$ or $p=\sqrt{5},(\sqrt{3}, / 2)=1 / 2 \sqrt{15}$
Also distance of orthocentre H from $A B$ is $1 / 3 p$. Now both H and P lie on a line perpendicular to $A B$ whose slope will be 2 and passing through $L(4,3 / 2)$,
$\therefore \tan \theta=2 \quad$ or $\quad \sin \theta=2 / \sqrt{5}$ and $\cos \theta=1 / \sqrt{5}$
Hence H and P lie on

$$
\frac{x-4}{\cos \theta}=\frac{y-3 / 2}{\sin \theta}=p \text { for } P
$$

and $=1 / 3 p$ for H.
$x=4+p \cos \theta, y=3 / 2+p \sin \theta$ for P

$x=4+(p / 3) \cos \theta, y=3 / 2+(p / 3) \sin \theta$ for H
Putting the values fo $p, \cos \theta$ and $\sin \theta$ in the above, we get
Point $\mathrm{P}(4+\sqrt{3} / 2,3 / 2+\sqrt{3}) \quad$ Point $\mathrm{H}[5+\sqrt{3} / 6,3 / 2+(1 / 2) \sqrt{3}$
Ex. 24 A straight line through $A(-2,-3)$ cuts the lines $x+3 y-9=0 \& x+y+1=0$ at B and C respectively. Find the equation of the line if $A B \cdot A C=20$.
[Ans. : $x-y=1 \& 3 x-y+3=0$]
Sol. $\frac{x+2}{\cos \theta}=\frac{y+3}{\sin \theta}=r$
Now for $r=r_{1}$ and $r=r_{2}$
$r_{1} \cos \theta-2+r_{1} \sin \theta-3+1=0$

$$
r_{1}(\cos \theta+\sin \theta)=4
$$

Similarly $r_{2}(\cos \theta+3 \sin \theta)=20$

$$
\text { Given } r_{1} r_{2}=20 \Rightarrow \frac{80}{(\cos \theta+\sin \theta)(\cos \theta+3 \sin \theta)}=20
$$

Multiplying $\tan \theta=3$ or 1
Hence the equation of the line, $y+3=3(x+2)$ or $y+3=(x+2)$
Ex. 25 A line is drawn throuhg a variable point $A(t+1,2 t)$ so as to meet the following lines in points indicated with them : $7 x+y-16=0$ in $B, 5 x-y-8=0$ in $C, x-5 y+8=0$ in D.
Show that $A C, A B, A D$ are in H.P.
Sol. Any line through $A(t+1,2 t)$ is

$$
\frac{x-(t-1)}{\cos \theta}=\frac{y-2 t}{\sin \theta}=\begin{array}{ccc}
r_{1}, & r_{2}, & r_{3} \\
B & C & D
\end{array}
$$

$$
\text { where } r_{1}=A B, r_{2}=A C, r_{3}=A D
$$

$\left[r_{1} \cos \theta+(t+1), r_{1} \sin \theta+2 t\right]$ is point B which lies on $7 x+y-16=0$
then $\quad r_{1}=\frac{9(1-t)}{7 \cos \theta \sin \theta}$
Similarly $r_{2}=\frac{3(1-t)}{5 \cos \theta-\sin \theta}$
and $\quad r_{3}=\frac{9(1-t)}{5 \sin \theta-\cos \theta}$
Now we have to show that r_{2}, r_{1}, r_{3} are in H.P. or $\frac{2}{r_{1}}=\frac{1}{r_{2}}+\frac{1}{r_{3}}$
Now $\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{5 \cos \theta-\sin \theta}{3(1-t)}+\frac{5 \sin \theta-\cos \theta}{9(1-t)}=\frac{14 \cos \theta+2 \sin \theta}{9(1-t)}=\frac{2(7 \cos \theta+\sin \theta)}{9(1-t)}$
$=\frac{2}{r_{1}}$ by (1). \quad Hence in H.P.

Ex. 26 The base of a triangle $A B C$ passes through the point $P(1,5)$ which divides it in the ratio $2: 1$. If the equation of the sides are $A C, 5 x-y-4=0$ and $B C, 3 x-4 y-4=0$, then the coordinates of vertex A are $\left(\frac{75}{17}, \frac{307}{17}\right)$.

Sol. Any line through $P(1,5)$ is $\frac{x-1}{\cos \theta}=\frac{y-5}{\sin \theta}=\underset{\text { for } B,}{r},-2 r$

A ($1-2 r \cos \theta, 5-2 r \sin \theta)$
A lies on $5 x-y-4=0$
or $\quad r(\sin \theta-5 \cos \theta)=2$
$B(1+r \cos \theta, 5=r \sin \theta)$
$5(1-2 r \cos \theta)-(5-2 r \sin \theta)-4=0$
B lies on $3 x-4 y-4=0$
or $\quad r(3 \cos \theta-4 \sin \theta)=21$
$3(1+r \cos \theta)-4(5+r \sin \theta)-4=0$

Dividing (1) by (2) to eliminate r
$\therefore \quad 29 \sin \theta=111 \cos \theta$

$$
\begin{align*}
& \frac{\sin \theta-5 \cos \theta}{3 \cos \theta-4 \sin \theta}=\frac{2}{21} \tag{2}\\
& \therefore \quad \frac{\sin \theta}{111}=\frac{\cos \theta}{29}=k \text { say }
\end{align*}
$$

Hence from (1) $\quad r(111 k-145 k)=2$ or $r k=-1 / 17$
Same value will be found from (2)
If point A is (x, y) then $x=1-58\left(-\frac{1}{17}\right)=\frac{75}{17}$
$y=5-2 r(111 k)=5-222\left(-\frac{1}{17}\right)=\frac{307}{17} \quad \therefore A$ is $\left(\frac{75}{17}, \frac{307}{17}\right)$ which satisfies $5 x-y-4=0$.

F. Position of a Given Point Relative to a Given Line

The fig. shows a point $P\left(x_{1}, y_{1}\right)$ lying above a given line

$$
\begin{equation*}
L(x, y) \equiv a x+b y+c=0 \tag{1}
\end{equation*}
$$

If an ordinate is dropped from P to meet the line L at N, then the x coordinate of N will be x_{1}. Putting $x=x_{1}$ in the equation (1) gives

$$
\mathrm{y} \text { coordinate of } \mathrm{N}=\frac{\left(\mathrm{ax}_{1}+\mathrm{c}\right)}{\mathrm{b}}
$$

If $P\left(x_{1}, y_{1}\right)$ lies above the lien, then we have
i.e., $\quad y_{1}+\frac{\left(a x_{1}+c\right)}{b}>0$
i.e.

$$
y_{1}>-\frac{\left(a x_{1}+c\right)}{b}
$$

\square

$$
y_{1}+\frac{\left(a x_{1}+c\right)}{b}>0
$$

$$
\frac{\left(a x_{1}+b y_{1}+c\right)}{b}>0
$$

i.e. $\quad \frac{L\left(x_{1}, y_{1}\right)}{b}>0$

Hence, if $P\left(x_{1}, y_{1}\right)$ satisfies equation (2), it would mean that P lies above the line $a x+b y+c=0$, and if

$$
\begin{equation*}
\frac{\mathrm{L}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}{\mathrm{b}}<0 \tag{3}
\end{equation*}
$$

it would mean that P lies below the line $a x+b y+c=0$.

The Ratio In Which A Given Line Divides The Line Segment Joining Two Points

Let the given line $a x+b y+c=0$ divide the line segment joining $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right)$ in the ratio $m: n$, then $\frac{m}{n}=-\frac{a x_{1}+b y_{1}+c}{a x_{2}+b y_{2}+c}$. If $A \& B$ are on the same side of the given line then $\frac{m}{n}$ is negative but if $A \& B$ are on opposite sides of the given line, then $\frac{m}{n}$ is positive

Position Of The Point $\left(\mathbf{x}_{1}, y_{1}\right)$ Relative To The Line ax+by + c = $\mathbf{0}$:
If $a x_{1}+b y_{1}+c$ is of the same sign as c, then the point $\left(x_{1}, y_{1}\right)$ lie on the origin side of $a x+b y+$ $c=0$. But if the sign of $a x_{1}+$ by $_{1}+c$ is opposite to that of c, the point $\left(x_{1}, y_{1}\right)$ will lie on the nonorigin side of $a x+b y+c=0$.
Ex. 27 Show that $(1,4)$ and $(0,-3)$ lie on the opposite sides of the line $x+3 y+7=0$.
Sol. At (1, 4), the value of $x+3 y+7=1+3(4)+7=20>0$.
At $(0,-3)$, the value of $x+3 y+7=0+3(-3)+7=-2<0$
$\therefore \quad$ The points $(1,4)$ and $(0,-3)$ are on the opposite sides of the given line. Ans.

Ex. 28 Find the ratio in which the line joining the point $A(1,2)$ and $B(-3,4)$ is divided by the line $x+y-5=0$.
Sol. Let the line $x+y=5$ divides $A B$ in the ratio k : 1 and P
$\therefore \quad$ coordinate of P are $\left(\frac{-3 \mathrm{k}+1}{\mathrm{k}+1}, \frac{4 \mathrm{k}+2}{\mathrm{k}+1}\right)$
Since P lies on $x+y-5=0$
$\therefore \quad \frac{-3 \mathrm{k}+1}{\mathrm{k}+1}+\frac{4 \mathrm{k}+2}{\mathrm{k}+1}-5=0 \quad \Rightarrow \quad \mathrm{k}=-\frac{1}{2}$
$\therefore \quad$ Required ratio is $1: 2$ externally Ans.
Ex. 29 Determine all values of α for which the point (α, α^{2}) lies inside the triangle formed by the lines $2 x+3 y-1=0, x+2 y-3=0,5 x-6 y-1=0$.
Sol. Solving equations of the lines two at a time we get the vertices of the given triangle as A ($7,5)$, $B(1 / 3,1 / 9)$ and $C(5 / 4,7 / 8)$
Let $\mathrm{P}\left(\alpha, \alpha^{2}\right)$ be a point inside the triangle ABC (fig.). Since A and P lie on the same side of the line $5 x-6 y-1=0$, both $5-(7)-6(5)-1$ and
$5 \alpha-6 \alpha^{2}-1$ must have the same sign.
$\Rightarrow \quad 5 \alpha-6 \alpha^{2}-1<0$ or $6 \alpha^{2}-5 \alpha+1>0$
$\Rightarrow \quad(3 \alpha-1)(2 \alpha-1)>0$
$\Rightarrow \quad$ Either $\alpha<1 / 3$ or $\alpha>1 / 2$
Again since B and P lie on the same side of the line
$x+2 y-3=0$,
$(1 / 3)+(2 / 9)$ and $\alpha+2 \alpha^{2}-3$ have the same sign.
$\Rightarrow \quad 2 \alpha^{2}+\alpha-3<0 \quad \Rightarrow \quad(2 \alpha+3)(\alpha-1)<0$
$\Rightarrow \quad-3 / 2<\alpha<1$

Lastly since C and P lie on the same side of the line $2 x+3 y-1=0$.
$2 \times(5 / 4)+3 \times(7 / 8)-1$ and $\left(2 \alpha+3 \alpha^{2}-1\right.$ have the same sign
$\Rightarrow \quad 3 \alpha^{2}+2 \alpha-1>0 \quad \Rightarrow(3 \alpha-1)(\alpha+1)>0$
$\Rightarrow \quad \alpha<-1$ or $\alpha>1 / 3$
Now (1), (2), (3) hold simultaneously if $\quad-3 / 2<\alpha<-1$ or $1 / 2<\alpha<1$.

G. Length Of Perpendicular From A Point On A Line

The length of perpendicular from $P\left(x_{1}, y_{1}\right)$ on $a x+b y+c=0$ is $\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$.

Reflection of point about a line :

(i) Foot of the perpendicular from a point on the line is

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}
$$

(ii) The image of a poit $\left(x_{1}, y_{1}\right)$ about the line $a x+b y+c=0$ is

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=2 \frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}
$$

Ex. 30 If (h k) be the foot of the perpendicular from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on $l \mathrm{x}+\mathrm{my}+\mathrm{n}=0$, show that

$$
\frac{\mathrm{h}-\mathrm{x}_{1}}{l}=\frac{\mathrm{k}-\mathrm{y}_{1}}{\mathrm{~m}}=-\frac{l \mathrm{x}_{1}+\mathrm{my}_{1}+\mathrm{n}}{l^{2}+\mathrm{m}^{2}} .
$$

Sol. $\frac{\mathrm{k}-\mathrm{y}_{1}}{\mathrm{~h}-\mathrm{x}_{1}}\left(-\frac{l}{\mathrm{~m}}\right)=-1$

$\Rightarrow \frac{\mathrm{h}-\mathrm{x}_{1}}{l}=\frac{\mathrm{k}-\mathrm{y}_{1}}{\mathrm{~m}}$
or $\frac{\mathrm{h} l-l \mathrm{x}_{1}}{l^{2}}=\frac{\mathrm{km}-\mathrm{mx}_{1}}{\mathrm{~m}^{2}}=\frac{\mathrm{h} l-l \mathrm{x}_{1}+\mathrm{km}-\mathrm{my}_{1}}{l^{2}+\mathrm{m}^{2}}$
or $\frac{\mathrm{h}-\mathrm{x}_{1}}{l}=\frac{\mathrm{k}-\mathrm{y}_{1}}{\mathrm{~m}}=\frac{l \mathrm{x}_{1}-\mathrm{my}_{1}-\mathrm{n}}{l^{2}+\mathrm{m}^{2}}$
Ex. 31 Find the foot of perpendicular of the line drawn from $P(-3,5)$ on the line $x-y+2=0$
Sol. Slope of $\mathrm{PM}=-1$
$\therefore \quad$ Equation of PM is $\quad \mathrm{x}+\mathrm{y}-2=0$

Solving equation (i) with $x-y+2=0$, we get coordinates of $M(0,2)$ Ans.
Alter
Here, $\frac{x+3}{1}=\frac{y-5}{-1}=-\frac{(1 \times(-3)+(-1) \times 5+2)}{(1)^{2}+(-1)^{2}}$
$\Rightarrow \quad \frac{x+3}{1}=\frac{y-5}{-1}=3$
$\begin{array}{lll}\Rightarrow \quad \mathrm{x}+3=3 & \Rightarrow & \mathrm{x}=0 \\ \text { and } & \mathrm{y}-5=-3 & \Rightarrow \\ \end{array}$
$\therefore \quad \mathrm{M}$ is $(0,2) \quad$ Ans.
Ex. 32 Find the image of the point $P(-1,2)$ in the line mirror $2 x-3 y+4=0$.
Sol. The image of $P(-1,2)$ about the line $2 x-3 y+4=0$ is

$$
\begin{aligned}
& \quad \frac{x+1}{2}=\frac{y-2}{-3}=-2 \frac{[2(-1)-3(2)+4]}{2^{2}+(-3)^{2}} ; \quad \quad \frac{x+1}{2}=\frac{y-2}{-3}=\frac{8}{13} \\
& \Rightarrow \quad 13 x+13=16 \quad x=\frac{3}{13} \\
& \& \quad 13 y-26=-24 \quad \Rightarrow \quad y=\frac{2}{13} \\
& \therefore \quad \\
& \quad \text { image is }\left(\frac{3}{13}, \frac{2}{13}\right) \quad \text { Ans. }
\end{aligned}
$$

Ex. 33 Find all points on $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$.
Sol. Note that the coordinates of an arbitrary point on $x+y=4$ can be obtained by putting $x+t(\operatorname{or} y=t)$ and then obtaining $y(\operatorname{or} x)$ from the equation of the line, where t is a parameter. Putting $x=t$ in the equation $x+y=4$ of the given, we obtain $y=4-t$. So, coordinates of an arbitrary point on the given line are $P(t, 4-t)$, Let $P(t, 4-t)$ be the required point. Then, distance of P from the line $4 x+3 y-10=0$ is unity i.e.
$\Rightarrow \quad\left|\frac{4 t+3(4-t)-10}{\sqrt{4^{2}+3^{2}}}\right|=1 \Rightarrow|t+2|=5 \Rightarrow t+2= \pm 5$
$\Rightarrow \quad t=-7$ or $t=3$
Hence, required points are $(-7,11)$ and $(3,1)$ Ans.
Ex. 34 On the straight line $y=x+2$, find the point for which the sum of the squared distances from the straight line $3 x-4 y+8=0$ and $3 x-y-1=0$ would be the least possible.
Sol. Point be (x, y) but it lies on $y=x+2$

$$
\begin{aligned}
& \text { So }(x, x+2) \quad F(x)=\left[\frac{3 x-4(x+2)+8}{\sqrt{3^{2}+4^{2}}}\right]^{2}+\left[\frac{3 x-(x+2)-1}{\sqrt{3^{2}+1^{2}}}\right]^{2} \\
& =\frac{2 x^{2}+5\left[4 x^{2}-12 x+9\right]}{50}=\frac{22\left[\left(x-\frac{30}{22}\right)^{2}-\frac{900}{484}\right]+45}{50} \\
& F(x) \text { is minimum at } x=\frac{15}{11} . \text { So point is }\left(\frac{15}{11}, \frac{37}{11}\right)
\end{aligned}
$$

Ex. 35 If p and p ' be the perpediculars from the origin upon the straight lines whose equations are x $\sec \theta+y \operatorname{cosec} \theta=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$, prove that $4 p^{2}+p^{\prime 2}=a^{2}$.
Sol. The point is given to be the origin (0,0) and lines are

$$
\begin{equation*}
x \sec \theta+y \operatorname{cosec} \theta=a \tag{1}
\end{equation*}
$$

$x \cos \theta-y \sin \theta=a \cos 2 \theta$.
If p and p^{\prime} are the perpendiculars from (0,0) on (1) and (2) respectively, then

$$
\begin{equation*}
p=\left|\frac{0 \cdot \sec \theta+0 \cdot \operatorname{cosec} \theta-a}{\sqrt{\left(\sec ^{2} \theta+\operatorname{cosec}^{2} \theta\right)}}\right|=\frac{a}{\sqrt{\left(\sec ^{2} \theta+\operatorname{cosec}^{2} \theta\right)}} \tag{2}
\end{equation*}
$$

and $\quad \mathrm{p}^{\prime}=\left|\frac{0 \cdot \cos \theta-0 \cdot \sin \theta-a \cos 2 \theta}{\sqrt{\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}}\right|=\left|\frac{a \cos 2 \theta}{1}\right|$
Now, $4 p^{2}+p^{\prime 2}=\frac{4 a^{2}}{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}+a^{2} \cos ^{2} 2 \theta \quad$ (putting the values of p and p^{\prime})

$$
=\frac{4 a^{2} \cos ^{2} \theta \sin ^{2} \theta}{\sin ^{2} \theta+\cos ^{2} \theta}+a^{2} \cos ^{2} 2 \theta \quad=a^{2} \sin ^{2} 2 \theta+a^{2} \cos ^{2} 2 \theta=a^{2} . \text { Proved. }
$$

H. Angle Between Two Straight Lines In Terms Of Their Slopes

If $m_{1} \& m_{2}$ are the slopes of two intersecting straight lines $\left(m_{1} m_{2} \neq-1\right) \& \theta$ is the acute angle between them, then $\tan \theta=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$.
Note : Let m_{1}, m_{2}, m_{3} are the slopes of three lines $L_{1}=0 ; L_{2}=0 ; L_{3}=0$ where $m_{1}>m_{2}>m_{3}$ then the interior angles of the $\triangle A B C$ found by these lines are given by,
$\tan \mathrm{A}=\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}} ; \tan \mathrm{B}=\frac{\mathrm{m}_{2}-\mathrm{m}_{3}}{1+\mathrm{m}_{2} \mathrm{~m}_{3}} \quad \& \tan \mathrm{C}=\frac{\mathrm{m}_{3}-\mathrm{m}_{1}}{1+\mathrm{m}_{3} \mathrm{~m}_{1}}$

Equation of Line through $\mathbf{P (h , k)}$ and Inclined at Angle θ to the Line $\mathbf{L} \equiv \mathbf{y} \mathbf{- m x} \mathbf{- c} \mathbf{c}=\mathbf{0}$ There will be two such lines L_{1}, L_{2} satisfying the given condition (see fig.). To find their equations, we only need to know their slopes.

Let m^{\prime} represent the slope of either of these lines, the by Art. 4.3, m^{\prime} must satisfy the following condition

$$
\begin{equation*}
\pm \tan \theta=\frac{m^{\prime}-m}{1+m m^{\prime}} \tag{1}
\end{equation*}
$$

Solving equation (1), we have

$$
m^{\prime}=\frac{m+\tan \theta}{1-m \tan \theta}, \frac{m-\tan \theta}{1+m \tan \theta}
$$

Hence, by Art. 4.1.2. equations of the required lines are

$$
\begin{align*}
& y-k=\frac{m+\tan \theta}{1-m \tan \theta}(x-h) \tag{2}\\
& y-k=\frac{m-\tan \theta}{1+m \tan \theta}(x-h) \tag{3}
\end{align*}
$$

Ex. 36 The acute angle between two lines is $\frac{\pi}{4}$ and slope of one of them is $1 / 2$. Find the slope of the other line.
Sol. If q be the acute angle between thelines with slopes m_{1} and m_{2}, then $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
Let $\quad \theta=\frac{\pi}{4}$ and $\mathrm{m}_{1}=\frac{1}{2}$
$\therefore \quad \tan \frac{\pi}{4}=\left|\frac{\frac{1}{2}-m_{2}}{1+\frac{1}{2} m_{2}}\right| \quad \Rightarrow \quad 1=\left|\frac{1-2 m_{2}}{2+\mathrm{m}_{2}}\right| \quad \Rightarrow \quad \frac{1-2 \mathrm{~m}_{2}}{2+\mathrm{m}_{2}}=+1$ or -1
Now $\frac{1-2 m_{2}}{2+m_{2}}=1 \quad \Rightarrow \quad m_{2}=-\frac{1}{3} \quad$ and $\frac{1-2 m_{2}}{2+m_{2}}=1 \quad \Rightarrow \quad m_{2}=3$.
$\therefore \quad$ The slope of the other line is either $-1 / 3$ or 3 Ans.
Ex. 37 Find the equation of the straight line which passes through the origin and making angle 60° with the line $x+\sqrt{3} y+3 \sqrt{3}=0$.

Sol. Given line is $x+\sqrt{3} y+3 \sqrt{3}=0$.

$$
\Rightarrow \quad y=\left(-\frac{1}{\sqrt{3}}\right) x-3 \quad \therefore \quad \text { Slope of }(1)=-\frac{1}{\sqrt{3}}
$$

Let slope of the required line be m . Also between these lines is given to be 60°

$$
\begin{aligned}
& \Rightarrow \tan 60^{\circ} \\
&\left|\frac{m-\left(-\frac{1}{\sqrt{3}}\right)}{1+\left(-\frac{1}{\sqrt{3}}\right)}\right| \Rightarrow \quad \sqrt{3}=\left|\frac{\sqrt{3} m+1}{\sqrt{3}-m}\right| \quad \Rightarrow \quad \frac{\sqrt{3} m+1}{\sqrt{3}-m}= \pm \sqrt{3} \\
& \frac{\sqrt{3} m+1}{\sqrt{3}-m}=-\sqrt{3} \Rightarrow \sqrt{3} m+1=3-\sqrt{3} m \Rightarrow m=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Using $y=m x+c$, the equation of the required line is

$$
\begin{array}{ll}
& y=\frac{1}{\sqrt{3}} x+0 \text { i.e. } \quad x-\sqrt{3} y=0 \quad(\because \text { This passes through origin, so } c=0) \\
& \frac{\sqrt{3} m+1}{\sqrt{3}-m}=-\sqrt{3} \quad \Rightarrow \quad \sqrt{3} m+1=-3+\sqrt{3} m \\
\Rightarrow \quad & m \text { is not defined } \\
\therefore \quad \text { The slope of the required lien is not defined. Thus, the required lien is a vertical line. This } \\
\text { line is to pass through the origin. } \\
\therefore \quad & \text { the equation of the required line is } x=0 \quad \text { Ans. }
\end{array}
$$

Ex. 38 Starting at the origin, a beam of light hits a mirror (in the form of a line) at the point $A(4,8)$ and is reflected at the point $B(8,12)$. Compute the slope of the mirror.
Sol. Let the slope of the line mirror is m. Hence slope of normal is $-1 / \mathrm{m}$ Equating the two values of θ, we get

$3 m^{2}-2 m-3=0$
$\therefore \quad m=\frac{1+\sqrt{10}}{3}$ or $m=\frac{1-\sqrt{10}}{3}$ which is rejected (think !)
$[m \in(1,2)]$
$\therefore \quad$ slope of the mirror is $\frac{1+\sqrt{10}}{3}$

Ex. 39 Show that the equations to the straight lines passing through the point ($3,-2$) and inclined at 60° to the line $\sqrt{ } 3 x+y=1$ are $y+2=0$ and $y-\sqrt{ } 3 x+2+3 \sqrt{3}=0$.
Sol. The equation to the straight line passing through $(3,-2)$ and inclined at an angle of 60° to the line $\quad \sqrt{3} x+y=1$
are
(a) $y+2=\frac{-\sqrt{ } 3+\tan 60^{\circ}}{1+\sqrt{ } 3 \tan 60^{\circ}}(x-3)(\because \mathrm{m}$ of the given line is $-\sqrt{ } 3)$
or $y+2=\frac{-\sqrt{ } 3+\sqrt{ } 3}{1-(\sqrt{ } 3) \sqrt{ } 3}(x-3)$ or $y+2=0$.
(b) $y+2=\frac{-\sqrt{ } 3-\tan 60^{\circ}}{1+(\sqrt{ } 3) \tan 60^{\circ}}(x-3)$
or $\quad y+2=\frac{-\sqrt{ } 3-\sqrt{ } 3}{1-\sqrt{ } 3 \cdot \sqrt{3}}(x-3) \quad$ or $\quad y+2=\frac{2 \sqrt{ } 3}{2}(x-3)$ or $y-\sqrt{ } 3 x+23 \sqrt{ } 3=0$.

I. Perpendicular / Parallel Lines

Perpendicular Lines

(i) When two lines of slopes $m_{1} \& m_{2}$ are at right angles, the product of their slopes is -1 , i.e. $m_{1} m_{2}=-1$. Thus any line perpendicular to $a x+b y+c=0$ is of the form $b x-a y+k=0$, where k is any parameter.
(ii) Straight lines $a x+b y+c=0 \& a^{\prime} x+b^{\prime} y+c^{\prime}=0$ are at right angles if \& only if $a a^{\prime}+b b^{\prime}=0$.

Parallel Lines

(i) When two straight lines are parallel their slopes are equal. Thus any line parallel to $y=m x+c$ is of the type $y=m x+d$, where k is a parameter.
(ii) Two lines $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and $\mathrm{a}^{\prime} \mathrm{x}+\mathrm{b}^{\prime} \mathrm{y}+\mathrm{c}^{\prime}=-$ are parallel if $\frac{\mathrm{a}}{\mathrm{a}^{\prime}}=\frac{\mathrm{b}}{\mathrm{b}^{\prime}} \neq \frac{\mathrm{c}}{\mathrm{c}^{\prime}}$.

Thus any line parallel to $a x+b y+c=0$ is of the type $a x+b y+k=0$, where k is a parameter
(iii) The distance between two parallel lines with equations $a x+b y+c_{1}=0 \& a x+b y+c_{2}=0$ is $\left|\frac{c_{1}-c_{2}}{\sqrt{a^{2}+b^{2}}}\right|$
Note : Coefficients of x \& y in both the equations must be same.
(iv) The area of the parallelogram $=\frac{p_{1} p_{2}}{\sin \theta}$, where $p_{1} \& p_{2}$ are distances between two pairs of opposite sides \& θ is the angle between any two adjacent sides. Note that area of the parallelogram bounded by
 the lines $y=m_{1} x+c_{1}, y=m_{1} x+c_{2}$ and $y=m_{2} x+d_{1}, y=m_{2} x+d_{2}$ is

$$
\text { given by }\left|\frac{\left(c_{1}-c_{2}\right)\left(d_{1}-d_{2}\right)}{m_{1}-m_{2}}\right| \text {. }
$$

Ex. 40 The equations of the two sides of a rhombous are $3 x-10 y+37=0$ and
$9 x+2 y-17=0$ and the equation of one its diagonals is $3 x-2 y-19=0$. Find the equations of two other sides of the rhombous and the equation to its second diagonal.
Sol. equation of $B D$ is $3 x-2 y-19=0$
$A C$ will be perpendicular to $B C$ and passing through $(1,4)$
\Rightarrow equation of $A C=2 x+3 y-14=0$
other two sides are $9 x+2 y-113=0$ \&
$3 x-10 y-59=0$
Ex. 41 Two sides of a square lie on the line $x+y=1$ and $x+y+2=0$. What is its area ?
Sol. Clearly the length of the side of the square is equal to the distance between the parallel lines

$$
\begin{equation*}
x+y-1=0 \quad \text {...(i) and } \quad x+y+2=0 \tag{i}
\end{equation*}
$$

Putting $x=0$ in (i), we get $y=1$. So (0,1) is a point on line (i)
Now, Distance between the parallel lines
$=$ length of the \perp from $(0,1)$ to $x+y+2=0=\frac{|0+1+2|}{\sqrt{1^{2}+1^{2}}}=\frac{3}{\sqrt{2}}$
Thus, the length of the side of the square is $\frac{3}{\sqrt{2}}$ and hence its area $=\left(\frac{3}{\sqrt{2}}\right)^{2}=\frac{9}{2}$

Ex. 42 Find the area of the parallelogram whose sides are $x+2 y+3=0,3 x+4 y-5=0$, $2 x+4 y+5=0$ and $3 x+4 y-10=0$

Sol.

Here, $\mathrm{c}_{1}=-\frac{3}{2}, \quad \mathrm{c}_{2}=\frac{5}{2}, \quad \mathrm{~d}_{1}=\frac{10}{3}, \mathrm{~d}_{2}=-\frac{5}{2}, \mathrm{~m}_{1}=-\frac{1}{2}, \mathrm{~m}_{2}=-\frac{3}{4}$

$$
\therefore \quad \text { Area }=\left|\frac{\left(-\frac{3}{2}+\frac{5}{2}\right)\left(\frac{10}{3}+\frac{5}{2}\right)}{\left(-\frac{1}{2}+\frac{3}{4}\right)}\right|=\frac{70}{3} \text { sq. units Ans. }
$$

Ex. 43 Two parallel lines pass through the point $(0,1)$ and $(-1,0)$ respectively. Two other lines are drawn through $(1,0)$ and $(0,0)$ respectively each perpendicular to the first two. The two sets of parallel lines intersect in four points that are the vertices of a square. Find all possible equations for the first two lines.
Sol. Equation of I_{3} is $y=-\frac{1}{m}(x-1) \quad x+m y-1=0$ PQRS is a square \Rightarrow distance between I_{1} and $I_{2}=$ distance between I_{3} and I_{4} $\left|\frac{m-1}{\sqrt{1+\mathrm{m}^{2}}}\right|=\left|\frac{1}{\sqrt{1+\mathrm{m}^{2}}}\right|$
$\Rightarrow \quad|m-1|=1$. Thus $\mathrm{m}=0$ or $\mathrm{m}=2$
if $m=2$, equation of lines are $y=2 x+1$ and $y=2(x+1)$
 if $m=0$, lines are $y=0$ and $y=1$
Ex. 44 Find the equation of the line such that its distance from the lines $3 x-2 y-6=0$ and $6 x-4 y-3=0$ is equal.
Sol. Note that lines are parallel.
y intercept of the required line is $=-\frac{1}{2}\left(3+\frac{3}{4}\right)=-\frac{15}{8}$
Its slope is $3 / 2$
equation is $y=\frac{3}{2} x-\frac{15}{8} \Rightarrow 12 x-8 y=15$

J. Concurrency Of Lines

Three lines $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0 \& a_{3} x+b_{3} y+c_{3}=0$
are concurrent if

$$
\left|\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2} \\
\mathrm{a}_{3} & \mathrm{~b}_{3} & \mathrm{c}_{3}
\end{array}\right|=0 .
$$

Alternatively: If three constants $A, B \& C$ can be found such that $A\left(a_{1} x+b_{1} y+c_{1}\right)+B\left(a_{2} x+b_{2} y+c_{2}\right)+C\left(a_{3} x+b_{3} y+c_{3}\right) \equiv 0$, then the three straight lines are concurrent.

Ex. 45 Prove that the straight lines $4 x+7 y=9,5 x-8 y+15=0$ and $9 x-y+6$ are concurrent.
Sol. Given lines are

$$
\begin{array}{ll}
& 4 x+7 y-9=0 \\
& 5 x-8 y+15=0 \\
\text { and } \quad & 9 x-y+6=0
\end{array}
$$

$\Delta=\left|\begin{array}{ccc}4 & 7 & -9 \\ 5 & -8 & 15 \\ 9 & -1 & 6\end{array}\right|=(4(-48+15)-7(30-135)-9(-5+72)=-132+735-603=0$
Hence lines (1), (2) and (3) are concurrent.
Ex. 46 Prove using analytical geometry that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid points of the parallel sides.
Sol. T.P.T. $O C, A B \& M N$ are concurrent
Equation of $O C$: $y=c / d x$
$c x-d y=0$
(1)

Equation of $A B: y-0=\frac{2 c}{2 b-2 a}(x-2 a) \quad c x+(a-b) y-2 a c=0$
(2)

Equation of $M N: \quad y-0=\frac{2 c}{b+d-a}(x-a)$
$2 c x+(a-b-d) y-2 a c=0$
(3)

Now consider the determinant formed by the co-efficient of

$$
\left|\begin{array}{ccc}
c & -d & 0 \\
c & a-b & -2 a c \\
2 c & a-b-d & -2 a c
\end{array}\right|=-2 a c^{2}\left|\begin{array}{ccc}
1 & -d & 0 \\
1 & a-b & 1 \\
2 & a-b-d & 1
\end{array}\right|
$$

Using $R_{3} \rightarrow R_{3}-\left(R_{1}+R_{2}\right)$

Ex. 47 Prove that the three straight lines joining the angular points of a triangle to the middle points of the opposite sides meet in a point.
Sol. Let the angular points A, B, C be (x^{\prime}, y^{\prime}), ($\left.x^{\prime \prime}, y^{\prime \prime}\right),\left(x^{\prime \prime \prime}, y^{\prime \prime \prime}\right)$, respectively. Then, D, E, F the middle points of $B C, C A, A B$ respectively, will be

$$
\left(\frac{x^{\prime \prime}+x^{\prime \prime \prime}}{2}, \frac{y^{\prime \prime}+y^{\prime \prime \prime}}{2}\right), \cdot\left(\frac{x^{\prime \prime \prime}+x^{\prime}}{2}, \frac{y^{\prime \prime \prime}+y^{\prime}}{2}\right) \text { and }\left(\frac{x^{\prime}+x^{\prime \prime}}{2}, \frac{y^{\prime}+y^{\prime \prime}}{2}\right) .
$$

The equation of $A D$ will therefore be

$$
\frac{y-y^{\prime}}{\frac{y^{\prime \prime}+y^{\prime \prime \prime}}{2}-y^{\prime}}=\frac{x-x^{\prime}}{\frac{x^{\prime \prime}+x^{\prime \prime \prime}}{2}-x^{\prime}}
$$

or $y\left(x^{\prime \prime}+x^{\prime \prime \prime}-2 x^{\prime}\right)-x\left(y^{\prime \prime}+y^{\prime \prime \prime}-2 y^{\prime}\right)+x^{\prime}\left(y^{\prime \prime}+y^{\prime \prime \prime}\right)-y^{\prime}\left(x^{\prime \prime}+x^{\prime \prime \prime}\right)=0$.
So the equations of BE and CF will be respectively

$$
y\left(x^{\prime \prime \prime}+x^{\prime}-2 x^{\prime \prime}\right)-x\left(y^{\prime \prime \prime}+y^{\prime}-2 y^{\prime \prime}\right)+x^{\prime \prime}\left(y^{\prime \prime \prime}+y^{\prime}\right)-y^{\prime \prime}\left(x^{\prime \prime \prime}+x^{\prime}\right)=0
$$

and $y\left(x^{\prime}+x^{\prime \prime}-2 x^{\prime \prime \prime}\right)-x\left(y^{\prime}+y^{\prime \prime}-2 y^{\prime \prime \prime}\right)+x^{\prime \prime \prime}\left(y^{\prime}+y^{\prime \prime}\right)-y^{\prime \prime \prime}\left(x^{\prime \prime \prime}+x^{\prime \prime}\right)=0$.
And, since the three equations when added together vanish identically, the three lines represented by them must meet in a point.

Ex. 48 Show that the area of the triangle whose sides are $a_{i} x+b_{i} y+c_{i}-0, i=1,2,3$ is equal to $\frac{\Delta^{2}}{2\left|\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\right|}$, where $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} are the co-factors of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} respectively in the determinant Δ, where $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$.

Sol. Let $\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ and $\Delta^{\prime}=\left|\begin{array}{lll}A_{1} & B_{1} & C_{1} \\ A_{2} & B_{2} & C_{2} \\ A_{3} & B_{3} & C_{3}\end{array}\right|$
where Δ^{\prime} is the determinant of the co-factors of the elements of Δ.
The given lines are

$$
\begin{align*}
& a_{1} x+b_{1} y+c_{1}=0 \tag{1}\\
& a_{2} x+b_{2} y+c_{2}=0 \tag{2}\\
& a_{3} x+b_{3} y+c_{3}=0 \tag{3}
\end{align*}
$$

Solving equations (1), (2) and (3) in pairs, we have the coordinates of the vertices of the triangle as

$$
P \equiv\left(\frac{b_{2} c_{3}-b_{3} c_{2}}{a_{2} b_{3}-a_{3} b_{2}}, \frac{a_{3} c_{2}-a_{2} c_{3}}{a_{2} b_{3}-a_{3} b_{2}}\right) \equiv\left(\frac{A_{1}}{C_{1}}, \frac{B_{1}}{C_{1}}\right)
$$

and similarly, we have

$$
\mathrm{Q} \equiv\left(\frac{\mathrm{~A}_{2}}{\mathrm{C}_{2}}, \frac{\mathrm{~B}_{2}}{\mathrm{C}_{2}}\right) \text { and } \mathrm{R} \equiv\left(\frac{\mathrm{~A}_{3}}{\mathrm{C}_{3}}, \frac{\mathrm{~B}_{3}}{\mathrm{C}_{3}}\right)
$$

Now we have

$$
\text { area of } \Delta P Q R=\bmod \text { of } \frac{1}{2}\left|\begin{array}{lll}
\frac{A_{1}}{C_{1}} & \frac{B_{1}}{C_{1}} & 1 \\
\frac{A_{2}}{C_{2}} & \frac{B_{2}}{C_{2}} & 1 \\
\frac{A_{3}}{C_{3}} & \frac{B_{3}}{C_{3}} & 1
\end{array}\right|=\frac{\Delta^{\prime}}{2\left|\mathrm{C}_{1} C_{2} C_{3}\right|}=\frac{\Delta^{2}}{2\left|\mathrm{C}_{1} \mathrm{C}_{2} C_{3}\right|} \quad\left[\because \Delta^{\prime}=\Delta^{2}\right]
$$

K. Family Of Lines

The equation of a family of lines passing through the point of intersection of $a_{1} x+b_{1} y+c_{1}=0 \& a_{2} x+b_{2} y+c_{2}=0$ is given by $\left(a_{1} x+b_{1} y+c_{1}\right)+k\left(a_{2} x+b_{2} y+c_{2}\right)=0$, where k is an arbitrary real number.

Note :

(i) If $u_{1}=a x+b y+c, u_{2}=a^{\prime} x+b^{\prime} y+d, u_{3}=a x+b y+c^{\prime}, u_{4}=a^{\prime} x+b^{\prime} y+d^{\prime}$ then, $u_{1}=0 ; u_{2}=0 ; u_{3}=0 ; u_{4}=0$ form a parallelogram. $u_{2} u_{3}-u_{1} u_{4}=0$ represents the diagonal BD.

On the similar lines $u_{1} u_{2}-u_{3} u_{4}=0$ represents the diagonal AC.

(ii) The diagonal AC is also given by $u_{1}+\lambda u_{4}=0$ and $u_{2}+\mu u_{3}=0$, if the two equations are identical for some λ and μ.
[For getting the values of $\lambda \& \mu$ compare the coefficients of $\mathrm{x}, \mathrm{y} \&$ the constant terms].

Ex. 49 If $\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0$ then all lines represented by $a x+b y+c=0$ pass through a fixed point. Find the coordinates of that fixed point.
Sol. The determinant on solving gives $a+c=2 b$ if a, b, c are in A.P.
now, $\quad a x+b y+2 b-a=0$ or $a(x-1)+b(y+2)=0$
hence the line passes through $(1,-2)$
Ex. 50 Obtain the equations of the liens passing through the intersection of line $4 x-3 y-1=0$ and $2 x-5 y+3=0$ and equally inclined to the axes.
Sol. The equation of any line thorugh the intersection of the given lines is

$$
\begin{align*}
& \quad(4 x-3 y-1)+\lambda(2 x-5 y+3)=0 \\
& \text { or } \quad x(2 \lambda+4)-u(5 \lambda+3)+3 \lambda-1=0 \tag{i}
\end{align*}
$$

Let m be the slope of this line. Then $m=\frac{2 \lambda+4}{5 \lambda+3}$
As the Ine is equally inclined with the axes, therefore
$m=\tan 45^{\circ}$ or $m=\tan 135^{\circ} \Rightarrow m= \pm 1, \frac{2 \lambda+4}{5 \lambda+3}= \pm \lambda=-1$ or $\frac{1}{3}$, putting the values of λ in
(i), we get $2 x+2 y-4=0$ and $14 x-14 y=0$
i.e. $x+y-2=0$ and $x=y$ as the equations of the required lines. Ans.

Ex. 51 The equations of the two sides of a parallelogram are $3 x-10 y+37=0$ and
$9 x+2 y-17=0$ and the equation of one of its diagonals is $3 x-2 y-19=0$. Find the equations of two other sides of the parallelogram and the equation to its second diagonal.
Sol. equation of BD is $3 x-2 y-19=0$
$A C$ will be perpendicular to $B C$ and passing through $(1,4)$
\Rightarrow equation of $A C=2 x+3 y-14=0$
other two sides are $9 x+2 y-113=0$ \&
$3 x-10 y-59=0$
Ex. 52 Two fixed lines $O A$ (along x-axis) and $O B$ as $y=m x$ are cut by a variable line in the points P and Q respectively and M and N are the feet of the perpendiculars from P and Q upon the lines OQB and OPA. Show that if PQ passes through a fixed point (α, β) then MN will also pass through a fixed point.

Sol. $\quad m_{P R}=m_{Q R} \quad \frac{\beta}{\alpha-p}=\frac{\beta-m q}{\alpha-q} ; \quad-\beta q=-\alpha m q-p \beta+p m q$
$p \beta+(\alpha m-\beta) q=p m q-(1)$
Equation of MP: $\quad y-0=-\frac{1}{m}(x-p) ; \quad x+m y=p$
Solving with $\mathrm{y}=\mathrm{mx} ; \mathrm{M}\left(\frac{\mathrm{p}}{1+\mathrm{m}^{2}}, \frac{\mathrm{mp}}{1+\mathrm{m}^{2}}\right)$

Equation of M N

$$
y-0=\frac{\frac{m p}{1+m^{2}}}{\frac{p}{1+m^{2}}-q}(x-q)
$$

Simplifying

$$
\begin{equation*}
q\left(y+y m^{2}\right)+p(m x-y)=p q m \tag{2}
\end{equation*}
$$

(1) - (2) gives $q\left(y\left(1+m^{2}\right)-\alpha m+\beta\right)+p(m x-y-b)=0$
i.e. $\quad L_{1}+k L_{2}=0$

L. Bisectors Of The Angles Between Two Lines

(i) Equations of the bisectors of angles between the lines $a x+b y+c=0$ \&

$$
a^{\prime} x+b^{\prime} y+c^{\prime}=0\left(a b^{\prime} \neq a^{\prime} b\right) \text { are }: \frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}= \pm \frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}}}
$$

(ii) To discriminate between the acute angle bisector \& the obtuse angle bisector If θ be the angle between one of the lines \& one of the bisectors, find $\tan \theta$.
If $|\tan \theta|<1$, then $2 \theta<90^{\circ}$ so that this bisector is the acute angle bisector.
If $|\tan \theta|>1$, then we get the bisector to be the obtuse angle bisector.
(iii) To discriminate between the bisector of the angle containing the origin \& that of the angle not containing the origin. Rewrite the equations, $a x+b y+c=0$ \&
$a^{\prime} x+b^{\prime} y+c^{\prime}=0$ such that the constant terms c, c^{\prime} are positive. Then ;
$\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}=+\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}}}$ gives the equation of the bisector of the angle containing the origin $\& \frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}=-\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}}}$ gives the equation of the bisector of the angle not containing the origin.
(iv) To discriminate between acute angle bisector \& obtuse angle bisector proceed as follows Write $a x+b y+c=0 \& a^{\prime} x+b^{\prime} y+c^{\prime}=0$ such that constant terms are positive.
If $a a^{\prime}+b b^{\prime}<0$, then the angle between the lines that contains the origin is acute and the equation of the bisector of this acute angle is $\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}=+\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}}}$ therefore $\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}=-\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}}}$ is the equation of other bisector.

If, however, $\mathrm{aa}^{\prime}+\mathrm{bb}^{\prime}>0$, then the angle between the lines that contains the origin is obtuse \& the equation of the bisector of this obtuse angle is :
$\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}=+\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}}}$; therefore $\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}=-\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{\sqrt{a^{\prime 2}+b^{\prime 2}}}$
is the equation of other bisector.
(v) Another way of identifying an acute and obtuse angle bisector is as follows:

Let $L_{1}=0 \& L_{2}=0$ are the given lines $\& u_{1}=0$ and $u_{2}=0$ are the bisectors between $L_{1}=0 \& L_{2}=0$. Take a point P on any one of the lines $L_{1}=0$ or $L_{2}=0$ and drop perpendicular on $u_{1}=0 \& u_{2}=0$ as shown. If ,
$|p|<|q| \Rightarrow u_{1}$ is the acute angle bisector.
$|p|>|q| \Rightarrow u_{1}$ is the obtuse angle bisector.
$|p|=|q| \Rightarrow$ the lines $L_{1} \& L_{2}$ are perpendicular.
Note : Equation of straight lines passing through $P\left(x_{1}, y_{1}\right)$ \& equally inclined with the lines $a_{1} x$ $+b_{1} y+c_{1}=0 \& a_{2} x+b_{2} y+c_{2}=0$ are those which are parallel to the bisectors between these two lines \& passing through the point P.

Ex. 53 Find the equations of the bisectors of the angle between the straight lines $3 x-4 y+7=0$ and $12 x-5 y-8=0$.
Sol. The equations of the bisectors of the angles between $3 x-4 y+7=0$ and $12 x-5 y-8=0$ are

$$
\begin{aligned}
& \frac{3 x-4 y+7}{\sqrt{3^{2}+(-4)^{2}}}= \pm \frac{12 x-5 y-8}{\sqrt{12^{2}+(-5)^{2}}} \\
& \text { or } \quad \frac{3 x-4 y+7}{5}= \pm \frac{12 x-5 y-8}{13} \quad \text { or } \quad 39 x-52 y+91= \pm(60 x-25 y-8)
\end{aligned}
$$

Taking the positive sign, we get $21 \mathrm{x}+27 \mathrm{y}-131=0$ as one bisector
Ans.
Taking the negative sign, we get $99 x-77 y+51=0$ as the other bisecotr. Ans.
Ex. 54 For the straight lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the
(i) bisector of the obtuse angle between them ;
(ii) bisector of the acute angle between them ;

Sol.(i) The equations of the given straight lines are

$$
\begin{align*}
& 4 x+3 y-6=0 \tag{1}\\
& 5 x+12 y+9=0 \tag{2}
\end{align*}
$$

The equation of the bisectors of the angles between lines (1) and (2) are

$$
\frac{4 x+3 y-6}{\sqrt{4^{2}+3^{2}}}= \pm \frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}} \text { or } \frac{4 x+3 y-6}{5}= \pm \frac{5 x+12 y+9}{13}
$$

Taking the positive sign, we have $\frac{4 x+3 y-6}{5}=\frac{5 x+12 y+9}{13}$
or $\quad 52 x+39 y-78=25 x+60 y+45$ or $27 x-21 y-123=0$
or $\quad 9 x-7 y-41=0$
Taking tyhe negative sign, we have $\frac{4 x+3 y-6}{5}=-\frac{5 x+12 y+9}{13}$
or $\quad 52 x+39 y-78=-25 x-60 y-45$ or $77 x+99 y-33=0$
or $\quad 7 x+9 y-3=0$
Hence the equation of the bisectors are
and $7 x+9 y-3=0$
.(3)

Now slope of line (1) $=-\frac{4}{3}$ and slope of the bisector (3) $=\frac{9}{7}$.
If θ be the acute angle between the line (1) and the bisector (3), then

$$
\begin{aligned}
& \tan \theta=\left|\frac{\frac{9}{7}+\frac{4}{3}}{1+\frac{9}{7}\left(-\frac{4}{3}\right)}\right|=\left|\frac{27+28}{21+36}\right|=\left|\frac{55}{-15}\right|=\frac{11}{3}>1 \\
& \theta>45^{\circ}
\end{aligned}
$$

$\therefore \quad \theta>45^{\circ}$
Hence $9 x-7 y-41=0$ is the bisector of the obtuse angle between the given line (1) and (2) Ans.
(ii) Since $9 x-7 y-41=0$ is the bisector of the obtuse angle between the given lines, therefore the other bisecotrs $7 x+9 y-3=0$ will be the bisector of the acute angle between the given lines.

2nd Method

Writing the equation of the lines so that constants become positive we have

$$
\begin{array}{ll}
& -4 x-3 y+6=0 \\
\text { and } & 5 x+12 y+9=0 \tag{2}\\
\text { Here } & a_{1}=-4, a_{2}=5, b_{1}=-3, b_{2}=12 \\
\text { Now } & a_{1} a_{2}+b_{1} b_{2}=-20-36=-56<0
\end{array}
$$

$\therefore \quad$ origin does not lie in the obtuse angle between lines (1) and (2) and hence equation of the bisector of the obtuse angle between lines (1) and (2) will be

$$
\frac{-4 x-3 y+6}{\sqrt{(-4)^{2}+(-3)^{2}}}=-\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}}
$$

or $\quad 13(-4 x-3 y+6)=-5(5 x+12 y+9)$
or $\quad 27 x-21 y-123=0$ or $9 x-7 y-41=0 \quad$ Ans.
and the equation of the bisector of the acute angle will be (origin lies in the acute angle)

$$
\frac{-4 x-3 y+6}{\sqrt{(-4)^{2}+(-3)^{2}}}=-\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}}
$$

or $77 x+99 y-33=0 \quad$ or $7 x+9 y-3=0$ Ans.
Ex. 55 For the straightlines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the bisector of the angle which contains the origing.
Sol. For point $O(0,0), 4 x+3 y-6=-6<0$ and $4 x+12 y+9=9>0$
Hence for point $O(0,0) 4 x+3 y-6$ and $5 x+12 y=+9$ are of opposite signs.
Hence equation of the bisector of the angles between the given lines containing the origin will be

$$
\begin{aligned}
& \frac{4 x+3 y-6}{\sqrt{(4)^{2}+(3)^{2}}}=-\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}} \\
& \text { or } \quad \frac{4 x+3 y-6}{5}=-\frac{5 x+12 y+9}{13} \\
& \text { or } \quad 52 x+39 y-78=-25 x-60 y-45 \\
& \text { or } \quad 77 x+99 y-33=0 \\
& \text { or } \quad 7 x+9 y-3=0 \text { Ans. }
\end{aligned}
$$

Ex. 56 Find the equations to the straight lines passing through the foot of the perpendicular from the point (h, k) upon the straight line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$, and bisecting the angles between the perpendicular and the given straight line.
Sol. Equation of the given line is
$A x+B y+C=0$.
Equation of any line perpendicular to (1) will be $B x-A y=\lambda$, where λ is any constant. As the perpendicular line passes through (h, k), hence it will satisfy (2). So Bh-Ak $=\lambda$. Substituting in (2), we get the equation of the line perpendicular to (1) and passing through (h, k) as

$$
\begin{align*}
& B x-A y=B h-A k \\
& B x-A y-B h+A k=0 . \tag{3}
\end{align*}
$$

Equations of the bisectors of the angles between the lines given by (1) and (3) will be

$$
\begin{array}{ll}
& \frac{A x+B y+C}{\sqrt{\left(A^{2}+B^{2}\right)}}= \pm\left[\frac{B x-A y-B h+A k}{\sqrt{\left(B^{2}+A^{2}\right)}}\right] \\
\text { or } & A x+B y+C= \pm[B(x-h)-A(y-k)] \\
\text { or } & A(y-k)-B(x-h)= \pm(A x+B y+C) .
\end{array}
$$

Ex. 57 Find the centre of the circle inscribed in the triangle whose angular points A, B, C are respectively the points $(1,2),(25,8)$ and $(9,21)$.
The equations of the sides $B C, C A, A B$ will be found to be

$$
13 x+16 y-453=0, \quad 19 x-8 y-3=0 \quad \text { and } \quad x-4 y+7=0
$$

Sol. If the co-ordinates of A, B, C be subsituted in the left-hand members of these equations, the results will be,,-+- respectively.
Now change the signs of all the terms in the equations fo the lines, if necessary, so that each vertex will be on the positive side of the opposite line; the equations will then be

$$
-12 x-16 y+453=0, \quad 19 x-8 y-3=0 \quad \text { and } \quad-x+4 y-7=0
$$

Then

$$
\frac{-13 x-16 y+453}{\sqrt{ }\left(13^{2}+16^{2}\right)}=+\frac{19 x-8 y-3}{\sqrt{ }\left(19^{2}+8^{2}\right)}
$$

must be the internal bisector of the angle ACB, for both members of the equation must be positive or both must be negative, so that any point on the bisector must be on the positive side of both CA and CB, or on the negative side of both.

So also $\quad \frac{19 x-8 y-3}{\sqrt{ }\left(19^{2}+8^{2}\right)}=+\frac{-x+4 y-7}{\sqrt{ }\left(1^{2}+4^{2}\right)}$
is te internal bisector of the angle BAC.
Hence the centre of the inscribed circle is given by

$$
\frac{-13 x-16 y+453}{5 \sqrt{ } 17}=\frac{19 x-8 y-3}{5 \sqrt{ } 17}=\frac{-x+4 y-7}{\sqrt{ } 17}
$$

and the point will be found to be $(11.5,11)$.
Ex. 58 Let $A B C$ be a triangle such that the coordinates of the vertex A are $(-3,1)$. Equation of the median through B is $2 x+y-2=0$ and equation of the angular bsector of C is $7 x-4 y-1=0$. Find the equation of the sides of the triangle.
Sol. Since C lies on $7 x-4 y-1=0$, therefore let us choose its coordinates as $\left(h, \frac{7 h-1}{4}\right)$. The mid-point of AC, i.e. $\left(\frac{h-3}{2}, \frac{7 h+3}{8}\right)$ lies on $2 x+y-3=0$, therefore we have $\quad 2\left(\frac{h-3}{2}\right)+\left(\frac{7 h+3}{8}\right)-3=0$ gives $\mathrm{h}=3$.
Hence, coordinates of C are $(3,5)$ and equation of $A C$ is

$$
y-5=\frac{5-1}{3+3}(x-3)
$$

i.e. $\quad 2 x-3 y+9=0$

i.e. $\frac{m-\frac{7}{4}}{1+\frac{7 m}{4}}=\frac{\frac{7}{4}-\frac{2}{3}}{1+\frac{7}{6}}$ (see fig.)
i.e. $\quad \frac{4 m-7}{7 m+4}=\frac{1}{2}$ gives $m=18$.

Therefore, equation of $B C$ is

$$
y-5=18(x-3)
$$

i.e.

$$
\begin{equation*}
18 x-y-49=0 \tag{2}
\end{equation*}
$$

Solving equations (2) and $2 x+y-3=0$ simultaneously gives the coordinates of B as $\left(\frac{13}{5}, \frac{-11}{5}\right)$.
Therefore, equation of $A B$ is $y-1=\left(\frac{1+\frac{11}{5}}{-3-\frac{13}{5}}\right)(x+3)$
i.e. $y-1=\frac{-4}{7}(x+3) \quad$ i.e. $\quad 4 x+7 y+5=0$.

Ex. 59 The equation of the diagonals a rectangle are $\quad y+8 x-17=0$ and $y-8 x+7=0$ If the area of the rectangle is 8 sq . units, find the equation of the sides of the rectangle.
Sol. The intersection point of the given diagonals

$$
\begin{array}{ll}
\text { and } & y+8 x-17=0 \\
& y-8 x+7=0 \\
\text { is } & P \equiv\left(\frac{3}{2}, 5\right) .
\end{array}
$$

Now, we have $\triangle C P D=\frac{1}{4}(A B C D)=2$ sq. units
i.e. $\quad I^{2} \sin \theta \cos \theta=2$
i.e. $\quad I^{2} \sin 2 \theta=4$

[putting $C P=1]$
where $\tan 2 \theta=\left|\frac{8-(-8)}{1+(8)(-8)}\right|=\frac{16}{63} \quad$ therefore $\sin 2 \theta=\frac{16}{65}$ and $\cos 2 \theta=\frac{63}{65}$
Putting in equation (1), we have $\quad R=\frac{65 \times 4}{16}=\frac{65}{4}$ i.e. $I=\frac{\sqrt{65}}{2}$.
Therefore, we have

$$
\begin{array}{rlrl}
\mathrm{PM} & =/ \cos \theta=I \sqrt{\frac{1+\cos 2 \theta}{2}} & =\frac{\sqrt{65}}{2} \times \sqrt{\frac{65+63}{2 \times 65}}=4 \\
\text { and } & \mathrm{PN} & =/ \sin \theta=I \sqrt{\frac{1-\cos 2 \theta}{2}} & =\frac{\sqrt{65}}{2} \times \sqrt{\frac{65-63}{2 \times 65}}=\frac{1}{2}
\end{array}
$$

Equation of the angular bisectors of the diagonals are

$$
\frac{y+8 x-17}{\sqrt{65}}= \pm \frac{y-8 x+17}{\sqrt{65}}
$$

i.e. $\quad x=\frac{3}{2}$ and $y=5$.

From the fig we can see that sides $A B, C D$ are lines parallel to the angular bisector $P N \equiv y-5=0$ at a distance of $P N=4$ units. Hence, their equations are

$$
y=5 \pm 4 \quad \text { ie. } \quad y=1, y=9
$$

and the sides $A D, B C$ are lines parallel to the angular bisector $P M \equiv x-3 / 2=0$ at a distace of $P N=1 / 2$ units. Hence, their equations are

$$
x=\frac{3}{2} \pm \frac{1}{2} \quad \text { i.e. } \quad x=1, x=2
$$

M. Locus

The locus of a moving point is the path traced out by it under certain geometrical condition or conditions.
If a point moves in a plane under the geometrical condition that its distance from a fixed point O in the plane is always equal to a constant quantity a, then the curve traced out by the moving point will be circle with centre O and radius a. Thus locus of the point is a circle with centre O and radius a.

Equation of a locus : An equation is said to be the equation of the locus of a moving point if the following two conditions are satisfied
(i) The co-ordinates of every point on the locus satisfy the equation.
(ii) If the co-ordinates of any point satisfy the equation, then that point must lie on the locus.

Working Rule :

(i) If x and y co-ordinates of the moving point are given in terms of a third variable t (called the parameter), eliminate t to obtain the relation in x and y and simplify this relation. This will give the required locus.
(ii) If some geometrical conditions are given and we have to find the locus, then
(a) Take the co-ordinates of the variable point as (α, β).
(b) Write down the given geometrical conditions and express these conditions in terms of α and β.
(c) Eliminate the variable to get the relation in α and β i.e. this relation must contain only α, β and known quantities.
(d) Finally put x in place of α and y in place of β and the equation thus obtained will be the required equation of the locus.
(e) Sometimes the co-ordinates of the moving point itself is taken as (x, y). But this should be done only when no equation is given in question and co-ordinate of no point is given as (x, y). In this case the relation in x and y can be directly obtained by eliminating the variable.
(iii) Make suitable choice of the origin and the axes if co-ordinates of no point and equation of no curve is given in the question.
Ex. 60 A and B being the fixed points $(a, 0)$ and $(-a, 0)$ respectively, obtain the equation giving the locus of P , when $\mathrm{PA}=\mathrm{nPB}, \mathrm{n}$ being constant.
Sol. The given relation is $\mathrm{PA}=\mathrm{nPB}$ or $\mathrm{PA}^{2}=\mathrm{n}^{2} \mathrm{~PB}^{2}$
or $\left.\quad[x-a)^{2}+(y-0)^{2}\right]=n^{2}\left[(x+a)^{2}+(y-0)^{2}\right] \quad$ (on putting the values of PA and PB)
or $\quad x^{2}+a^{2}-2 a x+y^{2}=n^{2}\left[x^{2}+a^{2}+2 a x+y^{2}\right]$
or $\quad 0=x^{2}\left(n^{2}-1\right)+y^{2}\left(n^{2}-1\right)+a^{2}\left(n^{2}-1\right)+2 a x\left(n^{2}+1\right)$
or $\quad\left(n^{2}-1\right)\left(x^{2}+y^{2}+a^{2}\right)+2 a x\left(n^{2}+1\right)=0$
Ex. 61 The base $B C(=2 a)$ of a triangle $A B C$ is fixed; the axes being $B C$ and a perpendiculat to it through its middle point, find the locus of the vertex A, when the difference of the base angles is given $(=\alpha)$.
Sol. Let the co-ordinates of A be (x, y) and $\angle A B C=\theta_{1}$ and $\angle A C B=\theta_{2}$. Then

$$
\begin{aligned}
& \quad \tan \theta_{1}=\frac{y-0}{x+a} \text { and } \tan \left(180-\theta_{2}\right)=\frac{y-0}{x-a} \\
& \therefore \quad \tan \theta_{1}=\frac{y}{x+a} \text { and } \tan \theta_{2}=\frac{y}{x-a} .
\end{aligned}
$$

By hypothesis, $\theta_{2}-\theta_{1}=\alpha$ or $\tan \left(\theta_{2}-\theta_{1}\right)=\tan \alpha$
or
or $\quad \frac{-2 x y}{x^{2}-a^{2}-y^{2}}=\frac{1}{\cos \alpha}$
or $\quad \frac{-\frac{y}{x-a}-\frac{y}{x+a}}{1-\frac{y}{x-a} \frac{y}{x+a}}=\tan \alpha$
or $\quad x^{2}+2 x y \cot \alpha-y^{2}=a^{2}$.

Ex. 62 The line $L_{1} \equiv 4 x+3 y-12=0$ intersects the x and the y-axis at A and B respectively. A variable line perpendicular to L_{1} intersects the x and the y-axis at P and Q respectively. Find the locus of the circumcentre of triangle $A B Q$.
Sol. Clearly circumcentre of triangle $A B Q$ will lie on the perpendicular bisector $B(0,4)$ of line $A B$.
Now equation of perpendicular bisector of line $A B$ is $3 x-4 y+\frac{7}{2}=0$. Hence locus of circumcentre is $6 x-8 y+7=0$.

Ex. 63 An equilateral triangle $P Q R$ is formed where $P(1,3)$ is fixed point and Q is moving point on line $x=$ 3. Find the locus of R.

Sol. Slope of $P R$ is $\left(\theta \pm 60^{\circ}\right)$.
Let coordinates of R be (h, k).
$\frac{h-1}{\cos \left(\theta \pm 60^{\circ}\right)}=\frac{k-2}{\sin \left(\theta \pm 60^{\circ}\right)}=2 \sec \theta$
$h=1+2 \cos \left(\theta \pm 60^{\circ}\right) \sec \theta$
$\Rightarrow \quad \mathrm{h}=1+2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} \tan \theta\right)$

$\Rightarrow \quad \mathrm{k}=2+2 \sin \left(\theta \pm 60^{\circ}\right) \sec \theta$
$\Rightarrow \quad \mathrm{k}=2+2\left(\frac{\tan \theta}{2} \mp \frac{\sqrt{3}}{2}\right)$
Eliminating θ from (1) and (2), $\frac{\mathrm{h}-2}{\sqrt{3}}= \pm \tan \theta$
$k-2 \pm \sqrt{3}=\tan \theta$ $\Rightarrow \quad \frac{\mathrm{h}-2}{\sqrt{3}}= \pm(\mathrm{k}-2 \pm \sqrt{3})$
Locus is $(x-2)= \pm \sqrt{3}(y-2 \pm \sqrt{3})$.
Ex. 64 Let a given line L_{1} intersect the X-axis at P and Q respectively. Let a variable line L_{2} perpendicular to L_{1} cut the X-axis and the Y-axis at R and S respectively. Find the locus of the intersection point of the lines PS and QR.
Sol. Let the equation of the given

$$
\text { line } L_{1} b e \frac{x}{a}+\frac{y}{b}=1
$$

The intersection points of this line with the X -axis and the Y -axis are $\mathrm{P}(\mathrm{a}, 0)$ and $Q(0, b)$ respectively.
Let the equation of the line L_{2} perpendicular to
L_{1} be $\frac{x}{a}-\frac{y}{b}=\lambda(\lambda$ is a variable)

The intersection point of L_{2} with the X-axis and the Y-axis are $R(\lambda b, 0)$ and $S(0,-\lambda a)$ respectively.
Let $M(h, k)$ be the coordinates of the point whose locus is to be found.
Since M lies on PS, therefore we have
i.e. $\quad \lambda=\frac{k}{h-a}$

Also, since M lies on $Q R$, therefore we have

$$
\begin{equation*}
\text { slope of } M Q=\text { slope of } Q R \tag{4}
\end{equation*}
$$

i.e. $\quad \frac{k-b}{h}=\frac{1}{\lambda}$

Multiplying equations (3), (4) and then putting (x, y) in place of (h,k) gives the equation of the required locus as $x(x-a)+y(y-b)=0$.

Ex. $65 \mathrm{~A}, \mathrm{O}$ and B are fixed points in a straight line. A point P is chosen on a line passing through A perpendicular to $A O B$, and a point Q is chosen on a line pasing through B perpendicular to AOB such that $\angle \mathrm{POQ}$ is a right angle. Find the locus of the foot of the perpendicular from O on PQ.
Sol. Let us choose the fixed point O as the origin and line $A O B$ as the Y-axis. Also, let $O A=a$ and OB = b (see fig.).
Let us choose the variable points as $\mathrm{P}(\lambda, a)$ and $\mathrm{Q}(\mu,-\mathrm{b})$.
Since OP is perpendicular to OQ, therefore we have
i.e. $\quad\left(\frac{-b}{\mu}\right)\left(\frac{a}{\lambda}\right)=-1$
i.e. $\quad \mu \lambda=a b$

Let $M(h, k)$ be the point whose locus is to be found.
Since M lies on $A B$, therefore we have slope of $\mathrm{MQ}=$ slope of PQ

i.e. $\quad \frac{(k+b)}{(h-\mu)}=\frac{(a+b)}{(\lambda-\mu)}$
i.e. $\quad \lambda(k+b)+\mu(a-k)=(a+b) h \ldots(2)$

Also, since OM is perpendicular to PQ, therefore we have

$$
\begin{equation*}
\frac{(a+b)}{(\lambda-\mu)}=-\frac{h}{k} \quad \text { i.e. } \quad \mu-\lambda=\frac{k}{h}(a+b) \tag{3}
\end{equation*}
$$

Solving equations (2), (3) simultaneously, gives $\lambda=\frac{\left(\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{ak}\right)}{\mathrm{h}}$ and $\mu=\frac{\left(\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{bk}\right)}{\mathrm{h}}$
Putting the above values of λ, μ in equation (1), we have

$$
\left(h^{2}+k^{2}-a k\right)\left(h^{2}+k^{2}+b k\right)=\left(h^{2}\right) a b
$$

i.e. $\quad\left(h^{2}+k^{2}\right)\left\{h^{2}+k^{2}+k(b-a)-a b\right\}=0$
i.e.

$$
h^{2}+k^{2}+k(b-a)-a b=0
$$

Putting (x, y) in place of (h, k) gives the equation of the required locus as

$$
x^{2}+y^{2}+y(b-a)-a b=0
$$

Ex. 66 Through a fixed point any straight line is drawn meeting two given parallel straight lines in P and Q; through P and Q straight lines are drawn in fixed directions, meeting in R : prove that the locus of R is a straight line.
Sol. Take the fixed point O for origin, and the axis of y parallel to the two parallel straight lines; and let the equations of these parallel lines be $x=a, x=b$.
Then, if the equation of OPQ be $y=m x$, the abscissa of Q is b, and therefore its ordinate $m b$. Let $P R$ be always parallel to $y=m^{\prime} x$ and $Q R$ always parallel to $y=m^{\prime \prime} x$, then the equation of
PR will be

$$
\begin{equation*}
y-m a=m^{\prime}(x-a) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
y-m b=m^{\prime \prime}(x-b) \tag{ii}
\end{equation*}
$$

To find locus we have only to eliminate m between the equation (i) and (ii).
The result is $(b-a) y=m^{\prime} b(x-a)-m^{\prime \prime} a(x-b)$.
This equation is of the first degree, and therefore the required locus is a straight line.
Ex. 67 Find the equation of the straight line through the point $A(1,0)$ and perpendicular to the line $P Q$ given by the equation, $y=m x+m^{3}$. Obtain the co-ordinates of the point R in which the lines meet and prove that the locus of R as m varies is $y^{2}=1-x$. The line through R parallel to the x-axis meets the line through the origin parallel to $P Q$ in S. Find the co-ordinates of S and prove that when m is positive, the radius of the circle circumscribing the $\Delta A S R$
is $\frac{\mathrm{m}}{2} \sqrt{1+\mathrm{m}^{2}}$.

Sol. $y=-\frac{1}{m}(x-1)$ or $x+m y-1=0$
Solving $\quad y=m x+m^{3} \quad-$
and

$$
\begin{equation*}
x+m y=1 \tag{1}
\end{equation*}
$$

co-ordinates of $R\left(1-\mathrm{m}^{2}, \mathrm{~m}\right)$
$\therefore \mathrm{h}=1-\mathrm{m}^{2} \& \mathrm{k}=\mathrm{m} \quad \Rightarrow \quad$ Locus in $\mathrm{y}^{2}=1-\mathrm{x}$
Note that \triangle ASR is a right triangle
$\Rightarrow r=\frac{1}{2} A R=\frac{1}{2} \sqrt{m^{2}+m^{4}}=\frac{1}{2} m \sqrt{1+m^{2}}$
$m y+x=1 ; R\left(1-m^{2}, m\right) ; S(1, m)$
Ex. 68A straight line is drawn parallel to the base of a given triangle and its extremities are joined transversely to those of the base. Show that the locus of the point of intersection of the joining lines is a straight line.

Sol. Equation of BE :
$y=\frac{\lambda b}{\lambda a+c} \times$ or $\quad k(\lambda a+c)=h \lambda b \quad \Rightarrow \lambda=\frac{k c}{b h-k a}$
Similarly equation of $C D$:
$y-0=\frac{\frac{\lambda b}{1+\lambda}-0}{\frac{\lambda \mathrm{a}}{1+\lambda}-\mathrm{c}}(\mathrm{x}-\mathrm{c}) \quad \mathrm{k}\left(\frac{\lambda \mathrm{a}}{1+\lambda}-\mathrm{c}\right)=\frac{\lambda \mathrm{b}}{1+\lambda}(\mathrm{h}-\mathrm{c}) \Rightarrow \quad \lambda=\frac{\mathrm{kc}}{(\mathrm{a}-\mathrm{c}) \mathrm{k}+\mathrm{bc}-\mathrm{bh}}$
Equating the two values of λ we get the locus of $P(h, k)$ as

$$
2 b x-(2 a-c) y=b c \text {. which is a straight line }
$$

Ex. 69 ' Q ' is any point on the line $x=a$. If A is the point $(a, 0)$ and $Q R$, the bisector of the angle OQA meets the axis of x in R, then show that the locus of the foot of the perpendicular from R to $O Q$ has the equation, $(x-2 a)\left(x^{2}+y^{2}\right)+a x^{2}=0$.

Sol. Equation of $\mathrm{OQ}, \mathrm{y}=\frac{\mathrm{k}}{\mathrm{h}} \mathrm{x}$;
It passes through $(\mathrm{a}, \lambda) \Rightarrow \lambda=\frac{\mathrm{ka}}{\mathrm{h}}$
Note that $\Delta ' s \cong \Delta$ QRA
Hence QP $=$ QA $\Rightarrow \frac{a^{2} k^{2}}{h^{2}}=(h-a)^{2}+\left(k-\frac{a k}{h}\right)^{2}$. Simplify to get locus
Ex. 70 Through a fixed point O are drawn two straight lines at right angles to meet two fixed straight lines, which are also at right angles, in the points P and Q. Show that the locus of the foot of the perpendicular from O on $P Q$ is a straight line.
Sol. Let us take the line passing through O be the axes, $O^{\prime} P$ and $O^{\prime} Q$ be the other pair, O^{\prime} being (a, b) and cutting the axes at P and Q.
Let the equation of $O^{\prime} Q$ be,

$$
\begin{equation*}
(y-b)=m(x-a) . \tag{1}
\end{equation*}
$$

Hence the equation of $O^{\prime} P$ will be $(y-b)=-\frac{1}{m}(x-a)$.
(as PO^{\prime} is perpendicular to QO^{\prime})
Solving (1) with y-axis, OQ willbe ($b-a m$). Similarly solving (2) with x-axis, OP will be ($a+b m$).

Hence equation of $O P$ will be $\frac{x}{a+b m}+\frac{y}{b-a m}=1$.
Let R be the perpendicular on OP from O and its co-ordinates be (h,k). As R lies on OP, (h, k) will satisfy its equation. Hence

$$
\begin{equation*}
\frac{h}{a+b m}+\frac{k}{b-a m}=1 \tag{4}
\end{equation*}
$$

Slope of $O R=\frac{k}{h}$.
Slope of QP $=\frac{b-a m}{a+b m}$.
As $O R$ is perpendicualr to $Q R,\left(\frac{k}{h}\right) \times\left(-\frac{b-a m}{a+b m}\right)=-1$.
Eliminating m from (4) and (5), we get the required locus.
N. A Pair Of Straight Lines Through Origin
(i) A homogeneous equation of degree two of the type $a x^{2}+2 h x y+b y^{2}=0$ always represents a pair of straight lines passing through the origin \& if :
(a) $\quad \mathrm{h}^{2}>\mathrm{ab} \Rightarrow \quad$ lines are real \& distinct.
(b) $\quad \mathrm{h}^{2}=\mathrm{ab} \Rightarrow \quad$ lines are coincident.
(c) $\quad h^{2}<a b \Rightarrow \quad$ lines are imaginary with real point of intersection i.e. (0, 0)
(ii) If $y=m_{1} x \& y=m_{2} x$ be the two equations represented by $a x^{2}+2 h x y+b y^{2}=0$, then ;
$m_{1}+m_{2}=-\frac{2 h}{b} \& m_{1} m_{2}=\frac{a}{b}$.
(iii) If θ is the acute angle between the pair of straight lines represented by,
$a x^{2}+2 h x y+b y^{2}=0$, then $; \tan \theta=\frac{2 \sqrt{h^{2}-a b}}{a+b}$.
The condition that these lines are
(a) At right angles to each other is $a+b=0$. i.e. co-efficient of $x^{2}+c o-e f f i c i e n t ~ o f ~ y^{2}=0$.
(b) Coincident is $\mathrm{h}^{2}=\mathrm{ab}$.
(c) Equally inclined to the axis of x is $h=0$. i.e. coeff. of $x y=0$.
(iv) The equation to the straight lines bisecting the angle between the straight lines, $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$.
Proof: Let $a x^{2}+2 h x y+b y^{2} \equiv a(x-\alpha y)(x-\beta y)$,

$$
\therefore \quad \alpha+\beta=-\frac{2 \mathrm{~h}}{\mathrm{a}} \text { and } \alpha \beta=\frac{\mathrm{b}}{\mathrm{a}} .
$$

The equation of the bisectors is, $\quad \frac{(x-\alpha y)^{2}}{1+\alpha^{2}}-\frac{(x-\beta y)^{2}}{1+\beta^{2}}=0$.
That is $\quad\left(1+\beta^{2}\right)\left(x^{2}-2 \alpha x y+\alpha^{2} y^{2}\right)-\left(1+\alpha^{2}\right)\left(x^{2}-2 \beta x y+\beta^{2} y^{2}\right)=0$,
that is $\quad x^{2}+2 \frac{1+\alpha \beta}{\beta+\alpha} x y-y^{2}=0$,
that is

$$
x^{2}+2 \frac{1-\frac{b}{a}}{-\frac{2 h}{a}} x y-y^{2}=0
$$

that is $\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$.
(v) The product of the perpendiculars, dropped from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the pair of lines represented by the equation, $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{a x_{1}{ }^{2}+2 h x_{1} y_{1}+b y_{1}{ }^{2}}{\sqrt{(a-b)^{2}+4 h^{2}}}$.
Note: A homogeneous equation of degree n represents n straight lines passing through origin.
O. General Equation Of Second Degree Representing A Pair Of Straight Lines
(i) $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of straight lines if :

$$
a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0 \text {, i.e. if }\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=0 . .
$$

(ii) The angle θ between the two lines representing by a general equation is the same as that between the two lines represented by its homogeneous part only.

Ex. 71 Prove that the following equation represents two straight lines; find also their point of intersection and the angle between them : $6 y^{2}-x y-x^{2}+30 y+36=0$.
Sol. $6 y^{2}-x y-x^{2}+30 y+36=0$.
Hence $a=-1, b=6, c=36, h=-1 / 2, g=0, g=15$,

$$
\begin{aligned}
& \Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2} \\
& \left.\left.=(-1) \cdot 6 \cdot 36+2 \cdot 15 \cdot 0\left(-\frac{1}{2}\right)-\right)-1\right)(15)^{2}-6 \cdot(0)^{2}-36\left(-\frac{1}{2}\right)^{2}=0
\end{aligned}
$$

Hence the equation represents two straight lines.
Again $6 y^{2}-x y-x^{2}=(3 y+x)(2 y-x)$
Hence let $6 y^{2}-x y-x^{2}+30 y+36 \equiv(3 y+x+A) \times(2 y-x+B)$.
Comparing coefficients of x and y, we get $B-A=0$
and
$3+2 A=30$
Solving, we get $A=6$ and $B=6$.
Substituting in (1), we get the equations of the line represented as

$$
\text { and } \quad \begin{align*}
& 3 y+x+6=0 \tag{4}\\
& 2 y-x+6=0 \tag{5}
\end{align*}
$$

If θ be the angle betwee then $\tan \theta=\frac{\left.2 \sqrt{\left[\left(-\frac{1}{2}\right)\right.}(-1)(6)\right]}{-1+6}=\frac{2 \sqrt{\left(\frac{25}{4}\right)}}{5}=1$.

$$
\therefore \quad \theta=45^{\circ} . \quad \text { Ans. }
$$

Solving (4) and (5), we get $x=\frac{6}{5}, y=-\frac{12}{5} . \quad$ So point of intersection is $\left(\frac{6}{5},-\frac{12}{5}\right)$.
Ex. 72 The two line pairs $y^{2}-4 y+3=0$ and $x^{2}+4 x y+4 y^{2}-5 x-10 y+4=0$ enclose a 4 sided convex polygon find (i) area of the polygon (ii) length of its diagonals.
Sol. $y^{2}-4 y+3=0$
and $x^{2}+4 x y+4 y^{2}-5 x-10 y+4=0$
$(y-3)(y-1)$
$y=1, y=3$

$$
l(\mathrm{AB})=3 \quad \mathrm{~h}=2
$$

$\therefore \quad$ area of parallelogram $=3 \times 2=6$ Ans.
Length of $A C=\sqrt{1^{2}+2^{2}}=\sqrt{5}$
length of $B D=\sqrt{7^{2}+2^{2}}=\sqrt{53}=\sqrt{53}$
Ex. 73 Show that the equation $6 x^{2}-5 x y+y^{2}=0$ represents a pair of distinct straight lines, each passing through the origin. Find the separate equations of these lines.
Sol. The given equation is a homogeneous equation of second degree. So, it represents a pair of straight lines passing through theorigin. Comparing the given equation with $a x^{2}+2 h x y+b y^{2}=0$, we obtain $a=6, b=1$ and $2 h=-5$.
$\therefore \quad \mathrm{h}^{2}-\mathrm{ab}=\frac{25}{4}-6=\frac{1}{4}>0 \quad \Rightarrow \quad \mathrm{~h}^{2}>\mathrm{ab}$
Hence, the given equation represents a pair of distinct lines passing through the origin.
Now, $6 x^{2}-5 x y+y^{2}=0 \quad \Rightarrow \quad\left(\frac{y}{x}\right)^{2}-5\left(\frac{y}{x}\right)+6=0$
$\Rightarrow \quad\left(\frac{y}{x}\right)^{2}-3\left(\frac{y}{x}\right)-2\left(\frac{y}{x}\right)+6=0 \quad \Rightarrow \quad\left(\frac{y}{x}-3\right)\left(\frac{y}{x}-2\right)=0$
$\Rightarrow \quad \frac{y}{x}-3=0$ or $\frac{y}{x}-2=0 \Rightarrow y-3 x=0$ or $y-2 x=0$
So the given equation represents the straight lines $y-3 x=0$ and $y-2 x=0$
Ans.
Ex. 74 Find the equations to the pair of lines through the origin which are perpendicular to the lines represented by $2 x^{2}-7 x y+2 y^{2}=0$.
Sol. We have $2 x^{2}-7 x y+2 y^{2}=0$

$$
\begin{array}{lll}
\Rightarrow & 2 x^{2}-6 x y-x y+3 y^{2}=0 \\
\Rightarrow & (x-3 y)(2 x-y)=0
\end{array} \quad \Rightarrow \quad \begin{aligned}
& 2 x(x-3 y)-y(x-3 y)=0 \\
& x-3 y=0 \text { or } 2 x-y=0
\end{aligned}
$$

Thus the given equation represents the lines $x-3 y=0$ and $2 x-y=0$. The equations of the lines passing through the origin and perpendicular to the given lines are $y-0=-3(x-0)$
and $y-0-\frac{1}{2}(x-0)[\because($ Slope of $x-3 y=0)$ is $1 / 3$ and (Slope of $2 x-y=0)$ is 2$]$
$\Rightarrow \quad y+3 x=0$ and $2 y+x=0 \quad$ Ans.
Ex. 75 Find the angle between the pair of straight lines $4 x^{2}+24 x y+11 y^{2}=0$
Sol. Given equation is $4 x^{2}+24 x y+11 y^{2}=0$
Here $a=$ coeff. of $x^{2}=4, b=$ coeff. of $y^{2}=11$
and $2 \mathrm{~h}=$ coeff. of $\mathrm{xy}=24 \quad \therefore \quad \mathrm{~h}=12$
Now $\tan \theta=\left|\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}\right|=\left|\frac{2 \sqrt{144-44}}{4+11}\right|=\frac{4}{3}$
Where θ is the acute angle between the lines.
$\therefore \quad$ acute angle between the lines is $\tan ^{-1}\left(\frac{4}{3}\right)$ and obtuse angle between them is $\pi-\tan ^{-1}\left(\frac{4}{3}\right)$ Ans.

Ex. 76 Find the equation of the bisectors of the angle between the lines represented by $3 x^{2}-5 x y+y^{2}=0$
Sol. Given equation is $3 x^{2}-5 x y+y^{2}=0$
comparing it with the equation $a x^{2}+2 h x y+b y^{2}=0$
we have $a=3,2 h=-5$; and $b=4$
Now the equation of the bisectors of the angle between the pair of liens (1) is $\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$
or $\quad \frac{x^{2}-y^{2}}{3-4}=\frac{x y}{-\frac{5}{2}} ; \quad$ or $\quad \frac{x^{2}-y^{2}}{-1}=\frac{2 x y}{-5}$
or $5 x^{2}-2 x y-5 y^{2}=0 \quad$ Ans.
Ex. 77 Prove that the equation $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ represents a pair of straight lines. Find the co-ordinates of their point of intersection and also the angle between them.
Sol. Given equation is $2 x^{2}+5 x y+2 y^{2}+6 x+7 y+4=0$
Writing the equation (1) as a quadratic equation in x we have

$$
\begin{array}{ll}
\therefore & x=\frac{-(5 y+6) \pm \sqrt{(5 y+6)^{2}-4.2\left(3 y^{2}+7 y+4\right)}}{4} \\
& =\frac{-(5 y+6) \pm \sqrt{25 y^{2}+60 y+36-24 y^{2}-56 y-32}}{4} \\
& =\frac{-(5 y+6) \pm \sqrt{y^{2}+4 y+4}}{4}=\frac{-(5 y+6) \pm(y+2)}{4} \\
\therefore & x=\frac{-5 y-6+y+2}{4}, \frac{-5 y-6-y-2}{4} \\
\begin{array}{ll}
\text { or } & 4 x+4 y+4=0 \quad \text { and } \\
\text { or } & x+y+1=0 \quad \text { and } \quad 2 x+6 y+8=0 \\
& 2 x+4=0
\end{array}
\end{array}
$$

Hence equation (1) represents a pair of straight lines whose equation are $x+y+1=0$ and $2 x+3 y+4=0 \quad \ldots . .(2) \quad$ Ans.
Solving these two equations, the required point of intersection is $(1,-2) \quad$ Ans.
Ex. 78 Find the equation of the pair of lines both of which pass through the point $(1,-1)$ and are parallel to the angular bisectors of the line given by the equation

$$
x^{2}-y^{2}+4 x-2 y+3=0
$$

Sol. The given equation can be written as

$$
x^{2}+4 x+y^{2}+2 y=3
$$

i.e.

$$
(x+2)^{2}=y^{2}+2 y-3+4=(y+1)^{2}
$$

i.e. $\quad(x+2)= \pm(y+1)$
gives the equations of the two lines as $\quad x-y+1=0$
and $\quad x+y+3=0$
Equation of the angular bisectors of the above lines are given by

$$
\frac{x-y+1}{\sqrt{2}}= \pm \frac{x+y+3}{\sqrt{2}}
$$

i.e.

$$
x+2=0 \text { and } y+1=0
$$

Equations of th lines passing through the point $(1,-1)$ and parallel to the angular bisectors are

$$
x-1=0 \text { and } y+1=0
$$

Jointly, the required equation is given by $(x-1)(y+1)=0$
i.e.
$x y+x-y-1=0$.

Ex. 79 Obtain the condition that one of the straight lines given by the equation $a x^{2}+h x y+b y^{2}=0$, may coincide with one of the those given by the equation
Sol. Let the equation of the common line be $y=m x$.
Since, this must satisfy both the given equations, therefore we have

$$
\begin{align*}
& \mathrm{bm}^{2}+2 h m+\mathrm{a}=0 \tag{1}\\
& \mathrm{~b}^{\prime} \mathrm{m}^{2}+2 \mathrm{~h}^{\prime} \mathrm{m}+\mathrm{a}^{\prime}=0 \tag{2}
\end{align*}
$$

and
Solving equations (1) and (2), we have

$$
\frac{m^{2}}{2\left(h a^{\prime}-h^{\prime} a\right)}=\frac{m}{\left(a b^{\prime}-a^{\prime} b\right)}=\frac{1}{2\left(b h^{\prime}-b^{\prime} h\right)}
$$

Eliminating m, we have $\quad\left(a b^{\prime}-a^{\prime} b\right)^{2}=4\left(h a^{\prime}-h^{\prime} a\right)\left(b h^{\prime}-b^{\prime} h\right)$.
Ex. 80 Show that the orthocentre of the triangle formed by the straight lines, $a x^{2}+2 h x y+b y^{2}=0$ and $/ x+m y=1$ is a point $\left(x^{\prime}, y^{\prime}\right)$ such that ,

$$
\frac{\mathrm{x}^{\prime}}{l}=\frac{\mathrm{y}^{\prime}}{\mathrm{m}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{am}^{2}-2 \mathrm{~h} / \mathrm{m}+\mathrm{b} l^{2}} .
$$

Sol. $\quad a x^{2}+2 h x y+b y^{2} \equiv b\left(y-m_{1} x\right)\left(y-m_{2} x\right)$
$\therefore \mathrm{m}_{1}+\mathrm{m}_{2}=-\frac{2 \mathrm{~h}}{\mathrm{~b}} \& \mathrm{~m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}$
The line $I x+m y=1$ cuts $y-m_{1} x=0$
where $\left.\begin{array}{rl}\mathrm{x} & =\frac{1}{\ell+\mathrm{mm}_{1}} \\ \mathrm{y} & =\frac{\mathrm{m}_{1}}{\ell+\mathrm{mm}_{1}}\end{array}\right]$ point A.

The equation of the line through this point perpendicular to $y-m_{2} x=0$ is

$$
\mathrm{y}-\frac{\mathrm{m}_{1}}{\ell+\mathrm{mm}_{1}}=-\frac{1}{\mathrm{~m}_{2}}\left(\mathrm{x}-\frac{1}{\ell+\mathrm{mm}_{1}}\right)
$$

$\left(I+\mathrm{m}_{1}\right) \mathrm{x}-1+\mathrm{m}_{2}\left\{\mathrm{y}\left(\ell+\mathrm{mm}_{1}\right)-\mathrm{m}_{1}\right\}=0$
The orthocentre lies on the line and also on the line through the origin perpendicular to,
$l \mathrm{x}+\mathrm{my}=1$
i.e.
$m x-1 y=0$
or $\frac{x}{\ell}=\frac{y}{m}=\lambda$ say $-(2)$
put $x=\lambda \mid$ and $y=m \lambda$ in (1)
$\lambda\left\{\ell^{2}+\ell \mathrm{m}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)+\mathrm{m}^{2} . \mathrm{m}_{1} \mathrm{~m}_{2}\right\}=1+\mathrm{m}_{1} \mathrm{~m}_{2}$.
Putting $m_{1}+m_{2} \& m_{1} m_{2}$ we get,

$$
\lambda=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{~b} \ell^{2}-2 \mathrm{~h} \ell \mathrm{~m}+\mathrm{am}^{2}} \quad \therefore \frac{\mathrm{x}^{\prime}}{\ell}=\frac{\mathrm{y}^{\prime}}{\mathrm{m}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{~b} \ell^{2}-2 \mathrm{~h} \ell \mathrm{~m}+\mathrm{am}^{2}}
$$

Ex. 81 Prove that two straight lines represented by the equation,
$a y^{4}+b x y^{3}+c x^{2} y^{2}+d x^{3} y+a x^{4}=0$ will bisect the angle between the other two if $c+6 a=0$ and $b+d=0$.
Sol. Let $\mathrm{y}=\mathrm{mx}$. Hence,
$a m^{4}+b m^{3}+c m^{2}+d m+a=0$
$\Sigma \mathrm{m}_{1}=-\frac{\mathrm{b}}{\mathrm{a}} ; \Sigma \mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{c}}{\mathrm{a}} \quad \Sigma \mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}=-\frac{\mathrm{d}}{\mathrm{a}}$.

Note that $m_{1}=\tan \theta ; m_{2}=-\cot \theta ; m_{3}=\tan \left(\frac{\pi}{4}+\theta\right) ; m_{4}=\tan \left(\frac{3 \pi}{4}+\theta\right)$
$\Rightarrow m_{1} m_{2}=-1$ and $m_{3} m_{4}=-1$

Consider $\Sigma \mathrm{m}_{1}+\Sigma \mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}=0$

$$
\Rightarrow-\frac{\mathrm{b}}{\mathrm{a}}-\quad=0 \Rightarrow \mathrm{~b}+\mathrm{d}=0
$$

again $\Sigma m_{1} m_{2}=m_{1} m_{2}+m_{1} m_{3}+m_{1} m_{4}+m_{2} m_{3}+m_{2} m_{4}+m_{3} m_{4}$

$$
\begin{aligned}
& =-2+m_{1}\left(m_{3}+m_{4}\right)+m_{2}\left(m_{3}+m_{4}\right) \\
& =\left(m_{1}+m_{2}\right)\left(m_{3}+m_{4}\right)-2
\end{aligned}
$$

Substituting the values of m_{1}, m_{2}, m_{3} and m_{4} it simplifies to - 6

$$
\Rightarrow \frac{c}{a}=-6 \Rightarrow c+6 a=0
$$

Ex. 82 Prove that the general equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$, represents two parallel straight lines if $h^{2}=a b$ and $b g^{2}=a f^{2}$. Prove also that the distance between them is $2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}$
Sol. The given equation is

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 . \tag{1}
\end{equation*}
$$

Let the two equations represented by (1) be the respectively.

$$
\begin{align*}
& (\sqrt{ } \mathrm{a} \cdot x+\sqrt{ } \mathrm{b} \cdot \mathrm{y}+\Lambda)=0 \tag{2}\\
& (\sqrt{ } \mathrm{a} \cdot \mathrm{x}+\sqrt{ } \mathrm{b} \cdot \mathrm{y}+\mathrm{m})=0 \tag{3}
\end{align*}
$$

and
Then the combined equation will be

$$
(\sqrt{\mathrm{a}} \cdot \mathrm{x}+\sqrt{\mathrm{b}} \cdot \mathrm{y}+1)(\sqrt{ } \mathrm{a} \cdot \mathrm{x}+\sqrt{\mathrm{b}} \cdot \mathrm{y}+\mathrm{m})=0
$$

which is identical to (1) and as the coefficients of x^{2} and y^{2} are equal. Hence equating different coefficients
and

$$
\begin{aligned}
& 2 \mathrm{~h}=2 \sqrt{ }(\mathrm{ab}) \\
& 2 \mathrm{~g}=\sqrt{ } \mathrm{a}(I+\mathrm{m}) \\
& 2 \mathrm{f}=\sqrt{ } \mathrm{b} /+\mathrm{m}) \\
& \mathrm{c}=/ \mathrm{m} \\
& \mathrm{~h}^{2}=\mathrm{ab}
\end{aligned}
$$

By (4), we get
Dividing (5) by (6), we get $\frac{g}{f}=\frac{\sqrt{a}}{\sqrt{b}}$ or $\frac{g^{2}}{f^{2}}=\frac{a}{b}$.
Hence $\quad \mathrm{bg}^{2}=\mathrm{af}^{2}$.
Proved
Again, if p and p^{\prime} be the lengths of perpendiculars from origin on (2) and (3), then the distance between them is $p-p^{\prime}$.
So $p-p^{\prime}=\frac{\ell}{\sqrt{(a+b)}}-\frac{m}{\sqrt{(a+b)}}=\frac{(\ell-m)}{\sqrt{(a+b)}}=\sqrt{\left\{\frac{(\ell+m)-4 \ell m}{a+b}\right\}}$
Putting the values of $(I+m)$ and $/ m$ from (5) and (7), we get

P. Homogenisation

The joint equation of a pair of straight lines joining origin to the points of intersection of the line given by $l x+m y+n=0 \ldots \ldots \ldots \ldots \ldots$ (i) and the 2 nd degree curve : $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
is $a x^{2}+2 h x y+b y^{2}+2 g x\left(\frac{1 x+m y}{-n}\right)+2 f y\left(\frac{1 x+m y}{-n}\right)+c\left(\frac{1 x+m y}{-n}\right)^{2}=0$
(iii) is obtained by homogenising (ii) with the help of (i), by writing (i) in the form :

$$
\left(\frac{1 x+m y}{-n}\right)=1 .
$$

Note :
(i) Equation of any curve passing through the points of intersection of two curves $\mathrm{C}_{1}=0$ and $\mathrm{C}_{2}=0$ is given by $\lambda \mathrm{C}_{1}+\mu \mathrm{C}_{2}=0$ where $\lambda \& \mu$ are parameters.
(ii) Any second degree curve through the four point of intersection of $f(x y)=0 \& x y=0$ is given by $f(x y)+\lambda x y=0$ where $f(x y)=0$ is also a second degree curve.

Ex. 83 Find the equation to the straight lines joining the origin to the points of intersection of the straight line $\frac{x}{a}+\frac{y}{b}=1$ and the circle $5\left(x^{2}+y^{2}+b x+a y\right)=9 a b$. Also find the linear relation between a and b so that these straight lines may be at right angle.

Sol. Homogenising, $5\left(x^{2}+y^{2}\right)+5(b x+a y)\left(\frac{x}{a}+\frac{y}{b}\right)-9 a b\left(\frac{x}{a}+\frac{y}{b}\right)^{2}=0$ since lines are perpendicular hence coefficient of $\left(x^{2}+y^{2}\right)=0$

$$
\begin{aligned}
& 10+5\left(\frac{b}{a}+\frac{a}{b}\right)-9\left(\frac{b}{a}+\frac{a}{b}\right)=0 \quad \Rightarrow \quad 10=4\left(\frac{a^{2}+b^{2}}{a b}\right) \\
& \Rightarrow \quad 4 a^{2}+4 b^{2}=10 a b \quad \Rightarrow \quad 2\left(a^{2}+b^{2}\right)=5 a b \quad \Rightarrow \quad 2 a^{2}-5 a b+2 b^{2}=0 \\
& \Rightarrow \quad 2 a^{2}-4 a b-a b+2 b^{2}=0 \quad \Rightarrow \quad 2 a(a-2 b)-b(a-2 b)=0 \\
& \Rightarrow \quad a=2 b \text { or } \quad 2 a=b
\end{aligned}
$$

Ex. 84 Prove that the straight line joining the origin to the points of intersection of the straight line $k x+h y=2 h k$ with the curve

$$
(x-h)^{2}+(y-k)^{2}=c^{2} \text { are at right angles if, } h^{2}+k^{2}+c^{2} .
$$

Sol. The given line is $k x+h y=2 h k$ or $\frac{x}{2 h}+\frac{y}{2 k}=1$.
The given curve is $(x-h)^{2}-(y-k)^{2}=c^{2}$
or $\quad x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}-c^{2}=0$.
Making (2) homogeneous with the help of (1), we get

$$
\begin{equation*}
x^{2}+y^{2}-2 h x\left(\frac{x}{2 h}+\frac{y}{2 k}\right)-2 k y\left(\frac{x}{2 h}+\frac{y}{2 k}\right)+\left(h^{2}+k^{2}-c^{2}\right)\left(\frac{x}{2 h}+\frac{y}{2 k}\right)^{2}=0 \tag{3}
\end{equation*}
$$

Coefficient of x^{2} in (3) is $=\frac{h^{2}+k^{2}-c^{2}}{4 h^{2}} \quad$ Coefficient of y^{2} in (3) is $=\frac{h^{2}+k^{2}-c^{2}}{4 k^{2}}$
If the lines represented by (3) are perpendicular to each other, then

$$
\frac{h^{2}+k^{2}-c^{2}}{4 h^{2}}+\frac{h^{2}+k^{2}-c^{2}}{4 k^{2}}=0 \quad \text { or } \quad\left(h^{2}+k^{2}-c^{2}\right)\left(\frac{1}{4 h^{2}}+\frac{1}{4 k^{2}}\right)=0
$$

As $\left(\frac{1}{4 \mathrm{~h}^{2}}+\frac{1}{4 \mathrm{k}^{2}}\right)$ cannot be zero, being sum of two squares, hence $h^{2}+k^{2}-c^{2}=0$ or $h^{2}+k^{2}=c^{2} . \quad$ Proved.

Ex. 85 Prove that the angle between the lines joining the origin to the points of intersection of the straight line $y=3 x+2$ with the curve $x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ is $\tan ^{-1} \frac{2 \sqrt{2}}{3}$.

Sol. Equation of the given curve is $x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ and equation of the given straight line is $y-3 x=2 ; \quad \therefore \quad \frac{y-3 x}{2}=1$ Making equation (1) homogeneous equation of the second degree in x and y with the help of (1), we have

$$
x^{2}+2 x y+3 y^{2}+4 x\left(\frac{y-3 x}{2}\right)+8 y\left(\frac{y-3 x}{2}\right)-11\left(\frac{y-3 x}{2}\right)^{2}=0
$$

or $\quad x^{2}+2 x y+3 y^{2}+\frac{1}{2}\left(4 x y+8 y^{2}-12 x^{2}-24 x y\right)-\frac{11}{4}\left(y^{2}-6 x y+9 x^{2}\right)=0$
or $\quad 4 x^{2}+8 x y+12 y^{2}+2\left(8 y^{2}-12 x^{2}-20 x y\right)-11\left(y^{2}-6 x y+9 x^{2}\right)=0$
or $\quad-119 x^{2}+34 x y+17 y^{2}=0$ or $119 x^{2}-34 x y-17 y^{2}=0$
or $\quad 7 x^{2}-2 x y-y^{2}=0$
This is the equation of the liens joining the origin to the points of intersection of (1) and (2).
comparing equation (3) with the equation $a x^{2}+2 h x y+b y^{2}=0$
we have $a=7, b=-1$ and $2 h=-2 \quad$ i.r. $\quad h=-1$
If θ be the acute angle between pair of lines (3), then

$$
\begin{aligned}
& \tan \theta=\left|\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}\right|=\left|\frac{2 \sqrt{1+7}}{7-1}\right|=\frac{2 \sqrt{8}}{6}=\frac{2 \sqrt{2}}{3} \\
& \therefore \quad \theta=\tan ^{-1} \frac{2 \sqrt{2}}{3} \text { proved }
\end{aligned}
$$

Ex. 86 If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$, represent a pair of straight lines, prove that the quation to the third pair of straight lines passing through the points where these meet the axes is

$$
a x^{2}-2 h x y+b y^{2}+2 g x+2 f y+c+\frac{4 f g}{c} x y=0
$$

Sol. We are given the equation as

$$
\begin{equation*}
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \tag{1}
\end{equation*}
$$

The equation of y-axis is $x=0$ and x-axis is $y=0$. Hence the combined equation will be $x y=0$.

Equation of the curve passing through the point of intersection of (1) and (2) will be $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+2 \lambda x y=0$ $a x^{2}+2(h+\lambda) x y+b y^{2}+2 g x+2 f y+c=0$.
or
If (3) represent two straight lines, then its discriminant must be zero.
So $\quad a b c+2 . f . g . ~(h+\lambda)-a f^{2}-b g^{2}-c(h+\lambda)^{2}=0$
or

$$
\begin{equation*}
a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}+2 \lambda(f g-c h)-c \lambda^{2}=0 \tag{4}
\end{equation*}
$$

As (1) represents two straight line

$$
a b c+2 f g h-a f^{2}-b^{2}-\mathrm{ch}^{2}=0
$$

Putting in (4), we get $2 \lambda(\mathrm{fg}-\mathrm{ch})-\mathrm{c} \lambda=0$ or $\lambda=\frac{2(\mathrm{fg}-\mathrm{ch})}{\mathrm{c}}$.
Putting in (3), we get $a x^{2}+2\left[h+\frac{2(f g-c h)}{c}\right] x y+b y^{2}+2 g x+2 f y+c=0$
or

$$
a x^{2}+\frac{4 f g-2 c h}{c} x y+b y^{2}+2 g x+2 d y+c=0
$$

or

$$
a x^{2}-2 h x y+b y^{2}+2 g x+2 f y+c+\frac{4 f g}{c} x y=0 . \quad \text { Proved }
$$

Q. Transformation Of Axes

Ex. 87 What does the equation $3 x^{2}+2 x y+3 y^{2}-18 x-22 y+50=0$ become when referred to rectangular axes through the point $(2,3)$, the new axis of x making an angle of 45° with the old?
Sol. First change the origin, by putting $x^{\prime}+2, y^{\prime}+3$ for x, y respectively.
The new equation will be
$3\left(x^{\prime}+2\right)^{2}+2\left(x^{\prime}+2\right)\left(y^{\prime}+3\right)+3\left(y^{\prime}+3\right)^{2}-18\left(x^{\prime}+2\right)-22\left(y^{\prime}+3\right)+50=0 ;$
which reduces to

$$
3 x^{\prime 2}+2 x^{\prime} y^{\prime}+3 y^{\prime 2}-1=0
$$

or, suppressing the accents, to

$$
\begin{equation*}
3 x^{2}+2 x y+3 y^{2}=1 \tag{i}
\end{equation*}
$$

To turn the axes through an angle of 45° we must write $x^{\prime} \frac{1}{\sqrt{2}}-y^{\prime} \frac{1}{\sqrt{2}}$
for x, and $x^{\prime} \frac{1}{\sqrt{2}}+y^{\prime} \frac{1}{\sqrt{2}}$ for y. Equation (i) will then be

$$
3\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}\right)^{2}+\frac{x^{\prime}-y^{\prime}}{\sqrt{2}} \cdot \frac{x^{\prime}-y^{\prime}}{\sqrt{2}}+3\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}\right)^{2}=1
$$

which reduces to $4 x^{\prime 2}+2 y^{\prime 2}=1$.
Thus the required equation is $4 x^{2}+2 y^{2}=1$.
Ex. 88 Find the new abscissa and ordinate if the straight lines $2 x-3 y-12=0,3 x+2 y-4=0$ are the new axes of x and y respectively.
Sol. The new abscissa $=$ the perpendicular from (x, y) upon the new

$$
\text { axis of } y,(3 x+2 y-4=0) \quad=\frac{3 x+2 y-4}{\sqrt{13}}
$$

The new ordinate $=$ the perpendicular from (x, y) upon the new

$$
\text { axis of } x,(2 x-3 y-12=0) \quad=\frac{2 x-3 y-12}{\sqrt{13}}
$$

Ex. 89 Transform the equation of the curve $\frac{(3 x+4 y)^{2}}{25}-\frac{(4 x-3 y)^{2}}{50}=1$,
if we make $3 x+4 y=0$ the new axis of y, and $4 x-3 y=0$ the new axis of x.
Sol. The new abscissa $=\frac{3 x+4 y}{5}$,
and \quad the new ordinate $=\frac{4 x-3 y}{5}$
$\therefore \quad$ the transformed equation is $\frac{(5 x)^{2}}{25}-\frac{(5 y)^{2}}{50}=1$, or $\quad x^{2}-\frac{y^{2}}{2}=1$.

Ex. 90 Transform to parallel axes through the point $(1,-2)$ the equations $(1) y^{2}-4 x+4 y+8=0$. and (2) $2 x^{2}+y^{2}-4 x+4 y=0$
Sol.(i) The equation is $y^{2}-4 x+4 y+8=0$. The origin is transfered to $(1,-2)$. So the new equation will be

	$\left(y^{\prime}-2\right)^{2}-4\left(x^{\prime}+1\right)+4\left(y^{\prime}-2\right)+8=0$
or	$y^{\prime 2}-4 y^{\prime}+4-4 x^{\prime}-4+4 y^{\prime}-8+8=0$
or	$y^{\prime 2}=4 x^{\prime}$.

(ii) The equation is $2 x^{2}+y^{2}-4 x+4 y=0$.

Transferring the origin to $(1,-2)$, we get

$$
\begin{aligned}
& 2\left(x^{\prime}+1\right)^{2}+\left(y^{\prime}-2\right)^{2}-4\left(x^{\prime}+1\right)+4\left(y^{\prime}-2\right)=0 \\
& \text { or } \quad 2 x^{\prime 2}+4 x^{\prime}+2+y^{\prime 2}-4 y^{\prime}+4-4 x^{\prime}-4+4 y^{\prime}-8=0 \\
& \text { or } \quad 2 x^{\prime 2}+y^{\prime 2}=6 .
\end{aligned}
$$

Ex. 91 By transforming to parallel axes through a properly chosen point (h,k) Prove that the equation $12 x^{2}-10 x y+2 y^{2}+11 x-5 y+2=0$, can be reduced to one containing only terms of the second degree.
Sol. The given equation is $12 x^{2}-10 x y+2 y^{2}+11 x-5 y+2=0$.
Let the origin be transferred to (h, k) axes being parallel to the previous axes; then the equation becomes

$$
\begin{align*}
& 12\left(x^{\prime}+h\right)^{2}-10\left(x^{\prime}+h\right)\left(y^{\prime}+k\right)+2\left(y^{\prime}+k\right)^{2}+11\left(x^{\prime}+h\right)-5\left(y^{\prime}+k\right)+2=0 \\
& \text { or } \quad 12 x^{\prime 2}+12 h^{2}-24 x^{\prime} h-10 x^{\prime} y^{\prime}-10 x^{\prime} k-10 y^{\prime} h-10 h k+2 y^{\prime 2} \\
& +2 k^{2}+4 y^{\prime} k+11 x^{\prime}+11 h-5 y^{\prime}-5 k+2=0 \tag{1}\\
& \text { or } \quad 12 x^{\prime 2}+2 y^{\prime 2}-10 x^{\prime} y^{\prime}+x^{\prime}(24 h-10 k+11)+y^{\prime}(-10+4 k-5) \\
& +12 h^{2}-10 h k+2 k^{2}+11 h-5 k+2=0 .
\end{align*}
$$

If this equation contains the terms of x^{2} and y^{2} and constant terms only, then the coefficients of x^{\prime} and y' must be zero.
So

$$
\begin{equation*}
24 h-10 k+11=0 \tag{2}
\end{equation*}
$$

and

$$
(-10 h+5 k-5)=0
$$

Solving (2) and (3), we get $\mathrm{h}=-\frac{3}{2}$ and $\mathrm{k}=-\frac{5}{2}$
Hnece the required point is $\left(-\frac{3}{2},-\frac{5}{2}\right)$.
If we subsitute these values in (1), the equation reduces to

$$
12 x^{\prime 2}-10 x^{\prime} y^{\prime}-2 y^{\prime 2}=0
$$

