SOLUTION OF TRIANGLES

DPP by VKR Sir
 B.TECH., IIT DELHI

1. If $\cos A+\cos B+2 \cos C=2$ then the sides of the $\triangle A B C$ are in
(A) A.P.
(B) G.P
(C) H.P.
(D) none
2. If in a triangle $\sin A: \sin C=\sin (A-B): \sin (B-C)$ then $a^{2}: b^{2}: c^{2}$
(A) are in A.P.
(B) are in G.P.
(C) are in H.P.
(D) none of these
3. In a triangle $A B C, a: b: c=4: 5: 6$. Then $3 A+B=$
(A) 4 C
(B) 2π
(C) $\pi-C$
(D) π
4. In a triangle $A B C$ the relation $\frac{a}{13}=\frac{b}{7}=\frac{c}{15}$ holds good. Which of the following option(s) is/are correct ?
(A) The triangle is acute
(B) The triangle is obtuse
(C) $\tan \mathrm{C}=5$
(D) The angles A, B, C (in some order) are in A.P.
5. The sides of $a \triangle A B C$ satisfy the equation, $2 a^{2}+4 b^{2}+c^{2}=4 a b+2 a c$. Then
(A) the triangle is isosceles.
(B) the triangle is obtuse.
(C) $\mathrm{B}=\cos ^{-1} \frac{7}{8}$
(D) $\mathrm{A}=\cos ^{-1} \frac{1}{4}$
6. With usual notation in a $\triangle A B C, b^{2} \sin 2 C+c^{2} \sin 2 B$ equals
(A) $\frac{a b c}{R}$
(B) $\frac{2 a b c}{R}$
(C) $\frac{a b c}{2 R}$
(D) $2 b c \sin A$
7. Let $A B C$ be a triangle such that $\angle A C B=\frac{\pi}{6}$ and let a, b and c denote the lengths of the sides opposite to A, B and C respectively. The value(s) of x for which $a=x^{2}+x+1, b=x^{2}-1$ and $c=2 x+1$ is (are)
(A) $-(2+\sqrt{3})$
(B) $1+\sqrt{3}$
(C) $2+\sqrt{3}$
(D) $4 \sqrt{3}$
8. If a, b, c are the sides of a triangle $A B C$ then $\sqrt{a}+\sqrt{b}-\sqrt{c}$ is always
(A) negative
(B) positive
(C) non-negative
(D) non-positive
9. If sides of triangle $A B C$ are a, b and c such that $2 b=a+c$ then exhaustive range of $\frac{b}{c}$ is
(A) $\left(\frac{1}{3}, \frac{2}{3}\right)$
(B) $\left(\frac{1}{3}, 2\right)$
(C) $\left(\frac{2}{3}, 2\right)$
(D) $\left(\frac{3}{2}, 2\right)$
10. If the angles A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expresion $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) 1
(D) $\sqrt{3}$
11. In a triangle $A B C$ if $\sin A=\sin ^{2} B$ and $2 \cos ^{2} A=3 \cos ^{2} B$ then prove that the triangle is obtuse angled.
12. Prove that a triangle $A B C$ is possible satisfying $(a+b)^{2}=c^{2}+a b$ and $\sin A+\sin B+\sin C=1+\frac{\sqrt{3}}{2}$.

ANSWERS

1. A
2. A
3. D
4. $B D$
5. ACD
6. AD 7.B
7. B
8. C
9. D

Class XI
 Date : 08-09-12

Batch : P
Time : 60 Min.
DPP.No. 38

1. In a $\triangle A B C$ if $b+c=3 a$ then $\cot \frac{B}{2} \cdot \cot \frac{C}{2}$ has the value equal to :
(A) 4
(B) 3
(C) 2
(D) 1
2. With the usual notation in any $\triangle A B C$,
(A) $\frac{a+b+c}{\sin A+\sin B+\sin C}=\frac{1}{2 R}$
(B) $\frac{\cos A}{\sqrt{4 R^{2}-\mathrm{a}^{2}}}=\frac{\cos B}{\sqrt{4 R^{2}-\mathrm{b}^{2}}}=\frac{\cos \mathrm{C}}{\sqrt{4 \mathrm{R}^{2}-\mathrm{c}^{2}}}$
(C) $\frac{\operatorname{asec} \mathrm{A}+\mathrm{bsec} \mathrm{B}+\mathrm{csec} \mathrm{C}}{\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}}=2 R$
(D) $\Delta=\sqrt{s(s+a)(s+b)(s+c)}$
3. In $\triangle A B C$, if $\cos A+\cos B=4 \sin ^{2} \frac{C}{2}$, then which of the following hold(s) good?
(A) $\cot \frac{A}{2} \cot \frac{B}{2}=2$
(B) $\cot \frac{A}{2} \cot \frac{B}{2}=3$
(C) a, c, b are in A.P.
(D) a, b, c are in G.P.
4. The base $B C$ of $\triangle A B C$ is fixed and the vertex A moves, satisfying the condition $\cot \frac{B}{2}+\cot \frac{C}{2}=2 \cot \frac{A}{2}$, then
(A) $b+c=a$
(B) $b+c=2 a$
(C) vertex A moves on a straight line
(D) vertex A moves on an ellipse
5. In a triangle $A B C$, let $a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$.

Assertion (A): $\angle B=\frac{\pi}{2} \quad$ Reason (R): $\sin A=\frac{2}{\sqrt{5}}$.
6. Column I
(A) In a scalene triangle $A B C$, if $a \cos A=b \cos B$ then $\angle \mathrm{C}$ equals
(P) 30°
(Q) 45°
(B) In a triangle $\mathrm{ABC}, \mathrm{BC}=1$ and $\mathrm{AC}=2$. The maximum possible
(R) 60° value which the $\angle \mathrm{A}$ can have is
(S) 90°
(C) In a $\triangle A B C \angle B=75^{\circ}$ and $B C=2 A D$ where $A D$ is the altitude from A, then $\angle \mathrm{C}$ equals
7. In any $\triangle A B C$, prove that $\sum \frac{\cos A}{c \cos B+b \cos C}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$.
8. In any $\triangle A B C$, prove that $\frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}}=\frac{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}}{\cot A+\cot B+\cot C}$.
9. In a triangle $A B C$ if $(a+b+c)(b+c-a)=\lambda$ bc then prove that $0<\lambda<4$.
10. In triangle $A B C$, if $b \sin C(b \cos C+c \cos B)=42$, then find the area of the triangle $A B C$.
11. Prove that $\{\cot (\mathrm{A} / 2)+\cot (\mathrm{B} / 2)\}\left\{\mathrm{a} \sin ^{2}(\mathrm{~B} / 2)+\mathrm{b} \sin ^{2}(\mathrm{~A} / 2)\right\}=\mathrm{c} \cot (\mathrm{C} / 2)$.

ANSWERS

1. C
2. C
3. BC
4. $B D$
5. D
6. (A)-S; (B)-P; (C)-P
7. 21

Date : 11-09-12
Batch : P
Time : 60 Min.
DPP.No. 39

1. Area of a triangle inscribed in a circle of radius 4, if the measures of its angles are in the ratio $5: 4: 3$ is
(A) $4(\sqrt{3}-\sqrt{2})$
(B) $4(\sqrt{3}+\sqrt{2})$
(C) $4(3-\sqrt{3})$
(D) $4(3+\sqrt{3})$
2. $\Delta A B C$ is isosceles with $A B=A C$ and $\angle C A B=106^{\circ}$. Point M is the interior of the triangle so that $\angle \mathrm{MBA}=7^{\circ}$ and $\angle \mathrm{MAB}=23^{\circ}$. The number of degrees in $\angle \mathrm{AMC}$ is equal to
(A) $87{ }^{\circ}$
(B) 67°
(C) 74°
(D) 83°
3. In $\triangle A B C$, the ratio $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ is not always equal to
(A) $2 R$, where R is the circumradius
(B) $\frac{a b c}{2 \Delta}$, where Δ is the area of the tnangle
(C) $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)^{1 / 2}$
(D) $\frac{(a b c)^{\frac{2}{3}}}{\left(h_{1} h_{2} h_{3}\right)^{\frac{1}{3}}}$
4. If in a triangle $A B C$ angle $B=90^{\circ}$ then $\tan ^{2} A / 2$ is :
(A) $\frac{b-c}{a}$
(B) $\frac{\mathrm{b}-\mathrm{c}}{\mathrm{b}+\mathrm{c}}$
(C) $\frac{b+c}{b-c}$
(D) None
5. In triangle $A B C$ the expansion $\frac{1}{4 a^{2} b^{2}}(a+b+c)(b+c-a)(c+a-b)(a+b-c)$ is equal to
(A) $2 \sin ^{2} C$
(B) $4 \sin ^{2} C$
(C) $\sin ^{2} C$
(D) $\sin C \cdot \cos C$
6. If I, m, n are the perpendiculars from the angular points of at $\triangle A B C$ upon the opposite sides a, b, c respectively then, $\frac{b l}{c}+\frac{c m}{a}+\frac{a n}{b}$ is equal to
(A) $\frac{a^{2}+b^{2}+c^{2}}{2 R}$
(B) $\frac{a b+b c+c a}{R}$
(C) $\frac{(a+b+c)^{2}}{4 R}$
(D) $4 R(1+\cos A \cos B \cos C)$
7. If the median of a triangle $A B C$ through A is perpendicular to $A B$ then $\frac{\tan A}{\tan B}$ has the value equal to
(A) $1 / 2$
(B) 2
(C) -2
(D) $-1 / 2$
8. The base angle of a Δ are 22.5° and 112.5°. The ratio of the base to the height of the triangle is
(A) $\sqrt{2}$
(B) 2
(C) $(2 \sqrt{2}-1)$
(D) $\sqrt{2}+1$
9. If a, b, c the sides of a triangle $A B C$ be $5,4,3$ respectively and D, E are the points of trisection of side $B C$, then prove that $\tan \angle C A E=3 / 8$.
10. Let a, b, c be the sides of a triangle $\& \Delta$ its area. Prove that $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} \Delta$. When does the equality hold?
11. In a $\triangle A B C$, let angles A, B, C are in G.P. with common ratio 2 . If circum radius of $\triangle A B C$ is 2 then find the value $\left(b^{-1}+c^{-1}-a^{-1}\right)$.
12. D
13. D
14. C
15. B
16. C
17. A
18.
19. B
11.0
Class XI Date : 13-09-12 Batch: P \quad Time: 60 Min. DPP.No. 40
20. The product of the arithmetic mean of the lengths of the sides of a triangle and harmonic mean of the lengths of the altitudes of the triangle is equal to :
(A) Δ
(B) 2Δ
(C) 3Δ
(D) 4Δ
21. In triangle $A B C, A A_{1}$ and $A A_{2}$ are the medians and altitudes respectively. Length $A_{1} A_{2}$ is equal to-
(A) $\frac{\left|\mathrm{a}^{2}-\mathrm{c}^{2}\right|}{2 \mathrm{~b}}$
(B) $\frac{\left|\mathrm{a}^{2}-\mathrm{b}^{2}\right|}{2 \mathrm{c}}$
(C) $\frac{\left|b^{2}-c^{2}\right|}{2 a}$
(D) None of these
22. In a triangle $\mathrm{ABC}, \mathrm{CH}$ and CM are the lengths of the altitude and median to the base AB . If $\mathrm{a}=10$, $b=26, c=32$ then length (HM)
(A) 5
(B) 7
(C) 9
(D) none

Comprehension

Consider a triangle $A B C$ with $b=3$. Altitude from the vertex B meets the opposite side in D, which divides $A C$ internally in the ratio $1: 2$. A circle of radius 2 passes through the point A and D and touches the circumcircle of the triangle BCD at D .
4. If E is the centre of the circle with radius 2 then angle EDA equals
(A) $\sin ^{-1}\left(\frac{\sqrt{15}}{4}\right)$
(B) $\sin ^{-1}\left(\frac{3}{4}\right)$
(C) $\sin ^{-1}\left(\frac{1}{4}\right)$
(D) $\sin ^{-1}\left(\frac{15}{16}\right)$
5. If F is the circumcentre of the triangle BDC then which one of the following does not hold good?
(A) $\angle \mathrm{FCD}=\sin ^{-1}\left(\frac{\sqrt{15}}{4}\right)$
(B) $\angle \mathrm{FDC}=\cos ^{-1}\left(\frac{1}{4}\right)$
(C) triangle DFC is an isosceles triangle
(D) Area of $\triangle \mathrm{ADE}=(1 / 4)^{\text {th }}$ of the area of $\triangle \mathrm{DBC}$
6. If R is the circumradius of the $\triangle A B C$, then R equal
(A) 4
(B) 6
(C) $2\left(\sqrt{\frac{61}{15}}\right)$
(D) $4\left(\sqrt{\frac{61}{15}}\right)$

Comprehension
In the figure below, it is given that $\angle C=90^{\circ}, A D=D B, E D$ is perpendicular to $A B, A B=20$ units and $A C=12$ units.
7. Area of triangle AEC is
(A) 24 sq. units
(B) 21 sq. units
(C) 42 sq. units
(D) $\frac{21}{2}$ sq. units

8. The value of $\tan (\delta+\beta)$ is
(A) $-\frac{177}{44}$
(B) $\frac{17}{4}$
(C) $\frac{3}{4}$
(D) $\frac{5}{4}$
9. The value of $\cos (\alpha+\beta)$ is
(A) $\frac{4}{5}$
(B) $\frac{3}{5}$
(C) $\frac{117}{125}$
(D) $-\frac{44}{125}$

ANSWERS

1. B
2. C
3. C
4. A
5. D
6. C
7. B
8. A
9. B

Date : 15-09-12
Batch: P Time : 60 Min.
DPP.No. 41

1. In $\triangle A B C$, if $\tan A$ and $\tan B$ are the roots of the equation $a b\left(x^{2}+1\right)=c^{2} x$, then which of the following hold(s) good?
(A) $\sin ^{3} \mathrm{C}+\cot ^{3} \mathrm{C}=1$
(B) $\cos ^{2} A+\cos ^{2} B=1$
(C) $\tan (A-B)=\frac{a^{2}-b^{2}}{2 a b}$
(D) $R+r=\frac{a+b}{2}$
2. Assertion (A): Suppose $A B C$ is a triangle such that $A B=13, B C=15$ and $C A=14$. D is the midpoint of $B C, E$ is the midpoint of $A D, F$ is the midpoint of $B E$, and G is the midpoint of $D F$. Then the area of triangle EFG is 21/4.

Reason (R): $\Delta \mathrm{EFG}=\frac{1}{2} \Delta \mathrm{DEF}=\frac{1}{4} \Delta \mathrm{BDE}=\frac{1}{8} \Delta \mathrm{ABD}=\frac{1}{16} \mathrm{ABC}$.
3. A triangle is inscribed in a circle of radius R. The length of the sides of the triangle are 7,8 and 9 units, Assertion (A): The radius R has an irrational value.
Reason (R): Area of the triangle has an irrational value.

Comprehension

In a triangle $A B C$, let $\tan A=1, \tan B=2, \tan C=3$ and $C=3$.
4. Area of the triangle $A B C$ is equal to
(A) $\frac{3 \sqrt{2}}{2}$
(B) 3
(C) $2 \sqrt{3}$
(D) $3 \sqrt{2}$
5. The radius of the circle circumscribing the triangle $A B C$, is equal to
(A) $\frac{\sqrt{10}}{2}$
(B) $\sqrt{5}$
(C) $\sqrt{10}$
(D) $\frac{\sqrt{5}}{2}$
6. Let Δ denote the area of the triangle ABC and Δ_{p} be the area of its pedal triangle. If $\Delta=k \Delta_{p}$ then k is equal to
(A) $\sqrt{10}$
(B) $2 \sqrt{5}$
(C) 5
(D) $2 \sqrt{10}$
7.

Column - I
(A) In a $\triangle A B C$ if $3 R=4 r$ then the value of $4(\cos A+\cos B+\cos C)$ is equal to
(B) A triangle has sides of lengths 1, 2 and $\sqrt{7}$. If the length of the internal
(P) 5
angle bisector drawn from the vertex opposite to the side length $\sqrt{7}$
can be expressed as rational in the lowest form $\frac{m}{n}$
then the value of $(m+n)$, is
(C) Let H be the orthocentre of the triangle $A B C$.

If $(\mathrm{AH})^{2}+(\mathrm{BH})^{2}+(\mathrm{CH})^{2}+(\mathrm{AB})^{2}+(\mathrm{BC})^{2}+(\mathrm{CA})^{2}=k R^{2}$ then k equals
(D) Consider a triangle $A B C$ and let a, b and c denote the lengths of the
sides opposite to the vertices A, B and C respectively. If a, b, c are
(R) 10 the roots of $t^{3}-12 t^{2}+47 t=60$,
then the value of $24\left(\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}\right)$ is equal to
ANSWERS

1. ABCD
2. A
3.
4. B
5. A
6. C
7. (A) $-Q$,
(B)-P, (C)-S, (D)-R

Class XI

Date : 18-09-12
Batch: P
Time : $\mathbf{6 0}$ Min.
DPP.No. 42

1. Acircle is inscribed in a triangle $A B C$, right angled at C. The circle is tangent to the segment $A B$ at D and the length of segments $A D$ and $D B$ are 7 and 13 respectively. Area of triangle $A B C$ is equal to
(A) 91
(B) 96
(C) 100
(D) 104
2. Let $A B C$ be a right triangle with $\angle B A C=90$ then $\left(\frac{r^{2}}{2 R^{2}}+\frac{r}{R}\right)$ is equal to
(A) $\sin B \sin C$
(B) $\tan B \tan C$
(C) $\sec B \sec C$
(D) $\cot B \cot C$
3. A triangle $A B C$ has sides $A B$ of length 2 units, $A C$ of length 1 unit and $B C$ of length $\sqrt{3}$ unit. The angle bisector I_{C} intersects the side $A B$ at the point D. The length $A D$ is.
(A) $\sqrt{3}-1$
(B) $\sqrt{3}+1$
(C) $\frac{2}{3}$
(D) $\sqrt{3}(\sqrt{3}-1)$

4. $\operatorname{In} \triangle A B C, 2 R+r=r_{1}$

Assertion (A): $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$
Reason (R): $\quad \triangle A B C$ is right angled at A.
5. Assertion (A): In $\triangle A B C$, if $r_{1}=2 r_{2}=3 r_{3}$ then $a: b: c=5: 4: 3$

Reason (R): In $\triangle A B C$, if $\mathrm{xr}_{1}=\mathrm{yr}_{2}=2 \mathrm{rr}_{3}=(x+y+z) \mathrm{r}$, then $\mathrm{a}: \mathrm{b}: \mathrm{c}=\mathrm{y}+\mathrm{z}: \mathrm{x}+\mathrm{z}: \mathrm{x}+\mathrm{y}$.
6. With usual notations, in a $\triangle A B C$ the value of $\Pi\left(r_{1}-r\right)$ can be simplified as:
(A) abc $\Pi \tan \frac{A}{2}$
(B) $4 r R^{2}$
(C) $\frac{(a b c)^{2}}{R(a b c)^{2}}$
(D) $4 \mathrm{Rr}^{2}$
7. In a $\triangle A B C$, a semicircle is inscribed whose diameter lies on the side c. If x is the length of the angle bisector through angle C then the radius of the semicircle is
(A) $\frac{a b c}{4 R^{2}(\sin A+\sin B)}$
(B) $\frac{\Delta}{x}$
(C) $x \sin \frac{C}{2}$
(D) $\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{s}$
8. In a $\triangle A B C$, if $r=1, R=3, s=5$, then which of the following is/are correct?
(A) Area of $\triangle A B C$ is 5. (B) Product of the sides of the $\triangle A B C i s 60$.
(C) $a^{2}+b^{2}+c^{2}=24$
(D) Sum of the ex-radii of $\triangle A B C$ is 13
9. In $\triangle \mathrm{ABC}$ if $\mathrm{B}=\pi / 2, s-\mathrm{a}=3 ; \mathrm{s}-\mathrm{C}=2$, then which of the following hold good?
(A) $r=1$
(B) $\Delta=12$
(C) $r_{1}=2$
(D) $R=5 / 2$
10. Select the statement(s) which is/are true with respect to a triangle $A B C$, all symbols have their usual meaning.
(A) The inradius, circumradius and one of the exradii of an equilateral triangle are in the ratio of $1: 2: 3$.
(B) $\mathrm{abc}=\frac{1}{4} \mathrm{Rrs}$
(C) If $r=3$ then the value of $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{1}{3}$
(D) If the diameter of an excircle be equal to the perimeter of the triangle then the triangle is a right angle.

ANSWERS

1. A
2. A
3. A
4. A
5. A
6. ACD 7.AC
7. ABCD
8. ACD
9. ACD

Batch : P
Time : $\mathbf{6 0}$ Min.
DPP.No. 43

1. $A B C$ is an acute angled triangle with circumcentre ' O ' orthocentre H. If $A O=A H$ then the measure of the angle A is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{5 \pi}{12}$
2. Let h_{a}, h_{b}, h_{c} are lengths of altitudes drawn from vertices A, B, C to sides $B C C A$ and $A B$ respectively. The minimum value of $\frac{a}{h_{a}}+\frac{b}{h_{b}}+\frac{c}{h_{c}}$ is equal to
(A) $\sqrt{3}$
(B) $2 \sqrt{3}$
(C) $3 \sqrt{3}$
(D) $4 \sqrt{3}$
3. If the orthocentre of a $\triangle \mathrm{ABC}$ lies on its circumcircle then :
(A) $\triangle A B C$ is an obtuse angled triangle
(B) $\triangle A B C$ is an acute angled triangle
(C) $\triangle A B C$ could be an acute or obtuse angled triangle
(D) $\triangle A B C$ is such that Π cos A vanishes where Π denotes the continued product.
4. If the data given to construct a triangle $A B C$ is $a=5, b=7, \sin A=3 / 4$, then it is possible to construct-
(A) only one triangle
(B) two triangles
(C) infinitely many triangles
(D) no triangles
5. If two sides a, b and the angle A be such that two triangles are formed, then the sum of the two values of the third side is
(A) $b^{2}-a^{2}$
(B) $2 \mathrm{~b} \cos \mathrm{~A}$
(C) $2 b \sin A$
(D) $\frac{b-c}{b+c}$
6. In an isosceles $\triangle A B C$ if the altitudes intersect on the inscribed circle then the cosine of the vertical angle ' A ' is :
(A) $1 / 9$
(B) $1 / 3$
(C) $2 / 3$
(D) none
7.

Column - I

(A) If ' O ' is the circumcentre of the $\triangle A B C$ and R_{1}, R_{2} and R_{3} are the radii of the circumcircles of triangles $O B C, O C A$ and $O A B$ respectively then $\frac{a}{R_{1}}+\frac{b}{R_{2}}+\frac{c}{R_{3}}$ has the value equal to
(B) $A D, B E$ and $C F$ are the perpendiculars from the angular points of a
(Q) $\frac{4 \Delta}{R^{2}}$ $\triangle A B C$ upon the opposite sides. The perimeters of the $\triangle D E F$ and $\triangle A B C$ are in the ratio
(C) If the incircle of the $\triangle A B C$ touches its sides respectively at L, M and N and if x, y, z be the circumradii of the triangles MIN, NIL and LIM
(R) $\frac{R}{2 r}$
(S) $\frac{\Delta}{4 R^{2}}$ where l is the incentre then the value of $\frac{x y z}{r^{3}}$, is

ANSWERS

1. C
2. B
3. D
4. D
5. B
6. A
7. (A)-Q, (B)-P, (C)-R
Class XI Date : 29-06-11 Batch:V \quad Time : 60 Min. DPP.No. 09
8. The area of the circle exceeds the area of regular polygon of n sides and of equal perimeter in the ratio of
(A) $\tan \frac{\pi}{n}: \frac{\pi}{n}$
(B) $\cos \frac{\pi}{n}: \frac{\pi}{n}$
(C) $\sin \frac{\pi}{n}: \frac{\pi}{n}$
(D) $\cot \frac{\pi}{n}: \frac{\pi}{n}$
9. If the number of sides of two regualr polygons hoving the some perameter be n and 2 n , prove that their areas are in the ratio $2 \cos \frac{\pi}{n}:\left(1+\cos \frac{\pi}{n}\right)$.
10. The radius of the circle circumscribed about regular n-gon $A_{1} A_{2} \ldots \ldots . A_{n}$ is equal to R. Prove that the sum of all sides and of all diagonal of n-gon is equal to $n R \cot \left(\frac{\pi}{2 n}\right)$.
11. $A B C D$ is a quadrilateral with an area of 1 and $\angle B C D=100^{\circ}, \angle A D B=20^{\circ}, A D=B D$ and $B C=D C$ as shown in the figure. The product $(A C) \times(B D)$ is equal to
(A) $\frac{\sqrt{3}}{3}$
(B) $\frac{2 \sqrt{3}}{3}$
(C) $\sqrt{3}$
(D) $\frac{4 \sqrt{3}}{3}$

12. In the figure, $\triangle A B C$ is a right triangle at C. A semicircle with centre 0 is tangent to the side $A C$ and $B C$. If the area of the triangle is Δ, then the radius of the semicircle is
(A) $\frac{2 \Delta}{\sqrt{c^{2}+2 \Delta}}$
(B) $\frac{\Delta}{\sqrt{c^{2}+2 \Delta}}$
(C) $\frac{2 \Delta}{\sqrt{c^{2}+4 \Delta}}$
(D) $\frac{2 \Delta}{\sqrt{c^{2}+\Delta}}$

13. In a triangle $A B C$, if $\angle A=30^{\circ} b=10$ and $a=x$, then the values of x for which there are 2 possible triangles is given by
(A) $5<x<10$
(B) $x<\frac{5}{2}$
(C) $\frac{5}{3}<x<10$
(D) $\frac{5}{2}<x<10$
14. In a triangle $\mathrm{ABC}, \mathrm{BC}=5, \angle \mathrm{~B}=45^{\circ}, \angle \mathrm{C}=60^{\circ}$ and AD is altitude to side BC . Assuming AD as diameter, a circle is drawn which cuts side $A B$ and $A C$ at P and Q respectively. The length $P Q$ is equal to
(A) $\frac{5 \sqrt{3}}{4 \sqrt{2}}$
(B) $\frac{5 \sqrt{3}}{2}$
(C) $\frac{5 \sqrt{3}}{2 \sqrt{2}}$
(D) $\frac{5 \sqrt{3}}{\sqrt{2}}$
15. Let $A B C D$ be a cyclic quadrilateral such that $A B=2, B C=3, \angle B=120^{\circ}$ and area of quadrilateral $=4 \sqrt{3}$. Which of the following is/are correct?
(A) The value of $(A C)^{2}$ is equal to 19
(B) The sum of all possible values of product $A C$. $B D$ is equal to 35
(C) The sum of all possible values of (AD) ${ }^{2}$ is equal to 29
(D) The value of (CD) ${ }^{2}$ can be 4
16. Two circles are passing through vertex A of triangle $A B C$ and one of the circle touches the side $B C$ at B and other circle touches the side $B C$ at C. If $a=5$ and $\angle A=30^{\circ}$ then find the product of radii of two circles.

ANSWERS

4. D
5. C
6. A
7. C
8. ABCD
9.25
