SOLUTION OF TRIANGLES

DPP by VKR Sir B.TECH., IIT DELHI

Daily Practice Problems

Vinay Kumar (B. Tech., IIT Delhi) Target IIT-J					11-JEE 2014
Class	s XI	Date : 06- 09- 12	Batch : P	Time : 60 Min.	DPP.No. 37
1.	lf cos A + cosB (A) A.P.	+ 2cosC = 2 then the sic (B) G.P	les of the ∆ ABC are in (C) H.P.	ו (D) none	
2.	If in a triangle (A) are in A.P.	sin A : sin C = sin (A - E) (B) are in G.P.	B) : sin (B – C) then (C) are in H.P.	a ² : b ² : c ² (D) none of these	,
3.	In a triangle AE (A) 4C	C, a:b:c = 4:5:6. (B) 2π	Then 3A + B = (C) π - C	(D) π	
4.	In a triangle ABC	C the relation $\frac{a}{13} = \frac{b}{7} = \frac{c}{15}$	holds good. Which of	the following option(s)	is/are correct ?
	(A) The triangle (C) tan C = 5	is acute	(B) The triangle is ((D) The angles A, E	obtuse 3, C (in some order) ar	e in A.P.
5.	The sides of a (A) the triangle	△ ABC satisfy the equat is isosceles.	ion, $2a^2 + 4b^2 + c^2 = 4$ (B) the triangle is		
	(C) B = $\cos^{-1}\frac{7}{8}$		(D) $A = \cos^{-1} \frac{1}{4}$		
6.	With usual nota	ation in a \triangle ABC, b ² sin20	C + c ² sin2B equals		
	(A) $\frac{abc}{R}$	(B) $\frac{2abc}{R}$	(C) $\frac{abc}{2R}$	(D) 2 bc sinA	
7.	Let ABC be a tria	angle such that $\angle ACB = \frac{\pi}{6}$	and let a,b and c deno	ote the lengths of the si	des opposite to
	A, B and C resp	ectively. The value(s) of >			x + 1 is (are)
	(A) $-(2+\sqrt{3})$	(B) 1+√3	(C) $2 + \sqrt{3}$	(D) 4√3	
8.	If a, b, c are the (A) negative	sides of a triangle ABC th (B) positive	nen $\sqrt{a} + \sqrt{b} - \sqrt{c}$ is (C) non-negative	always (D) non-positive	
9.	If sides of triang	le ABC are a, b and c suc	ch that $2b = a + c$ then e	exhaustive range of $\frac{b}{c}$	is
	$(A)\left(\frac{1}{3},\frac{2}{3}\right)$	$(B)\left(\frac{1}{3},2\right)$	(C) $\left(\frac{2}{3},2\right)$	(D) $\left(\frac{3}{2},2\right)$	
10.	If the angles A, E	3 and C of a triangle are in	an arithmetic progress	ion and if a,b and c der	note the lengths
		osite to A, B and C respec			
	(A) $\frac{1}{2}$	(B) $\frac{\sqrt{3}}{2}$	(C) 1	(D) $\sqrt{3}$	
11.	In a triangle AE angled.	BC if sin A = sin ² B and 2	$2\cos^2 A = 3\cos^2 B$ th	en prove that the tria	ngle is obtuse
12.	Prove that a tria	angle ABC is possible sat	$(a + b)^2 = c^2 + a$	b and sin A + sin B + s	$\sin C = 1 + \frac{\sqrt{3}}{2}.$
4 ^	2 ^ ^				10 0
1. A	2. A 3.	D 4. BD 5. ACD	6. AD 7. B	8.B 9.C	10. D

Daily Practice Problems

Vina	ay Kumar (i	B. Tech., IIT Delhi)	ТТ	Target IIT-JEE 2014		
Class		Date : 08- 09-) Min. DPP.No. 3	
1.	In a Δ ABC if	b+c=3a then cot	$\frac{B}{2} \cdot \cot \frac{C}{2}$ has the v	value equal to :		
	(A) 4	(B) 3	(C) 2	(D) 1		
2.	With the usua	I notation in any ΔA	BC ,			
	(A) $\frac{a+b}{\sin A+\sin b}$	$\frac{1}{B+\sin C} = \frac{1}{2R}$	(B) $\frac{\cos^2}{\sqrt{4R^2}}$	$\frac{A}{-a^2} = \frac{\cos B}{\sqrt{4R^2 - b^2}} =$	$=\frac{\cos C}{\sqrt{4R^2-c^2}}$	
	(C) $\frac{\operatorname{asec} A + t}{\operatorname{tan} A}$	$\frac{\csc B + \csc C}{\tan B \tan C} = 2$	R (D) $\Delta = \sqrt{2}$	$\sqrt{s(s+a)(s+b)(s+c)}$		
3.	In ∆ABC, if cos	$sA + \cos B = 4 \sin^2 \frac{C}{2}$, then which of the f	ollowing hold(s) good	?	
	(A) $\cot \frac{A}{2} \cot \frac{B}{2}$	$e = 2$ (B) $\cot \frac{A}{2} \cot \frac{A}{2}$	$\frac{B}{2} = 3$ (C) a, c, b a	are in A.P. (D) a, b, c	are in G.P.	
4.	The base BC c	of $\triangle ABC$ is fixed and t	he vertex A moves, s	atisfying the condition	I	
	$\cot \frac{B}{2} + \cot \frac{C}{2}$	$r = 2 \cot \frac{A}{2}$, then				
	(A) b + c = a (C) vertex A mo	oves on a straight line	(B) b + c = (D) vertex /	2a A moves on an ellipse		
5.	In a triangle AE	3C, let a = 6, b = 3 an	$d\cos\left(A-B\right)=\frac{4}{5}.$			
	Assertion (A):	$a \angle B = \frac{\pi}{2}$ Reas	on (R): $\sin A = \frac{2}{\sqrt{5}}$			
6.	 then ∠ (B) In a tria value w (C) In a ΔA 	alene triangle ABC, if C equals ingle ABC, BC = 1 an which the \angle A can hav ABC \angle B = 75° and Be from A, then \angle C equ	d AC = 2. The maxim ve is C = 2AD where AD is	(P) (Q) um possible (R) (S)) 45°) 60°	
7.	In any $\triangle ABC$,	prove that $\sum \frac{c}{c \cos B}$	$\frac{\cos A}{B+b\cos C} = \frac{a^2+b^2}{2abc}$	$+c^2$.		
8.		prove that $\frac{(a+b+c)}{a^2+b^2+c}$				
9.	•	. , , ,		prove that $0 < \lambda < 4$.		
10.				find the area of the t	riangle ABC.	
11.	Prove that {cot	t (A/2) + cot (B/2)} {a		(2) = c cot (C/2).		
1. C	2.C 3	.BC 4.BD 5	ANSWERS D 6. (A)–S; (E		0. 21	
1.0	2.0 3	.BC 4.BD 3	b. D b. (A)-5; (E	s)-P; (C)-P 1	U. 21	

Daily Practice Problems

Vinay Kumar (B. Tech., IIT Delhi) Target IIT-JEE 2014									
Class	; XI	Date : 11- 09- 12	Batch : P	Time : 60 Min.	DPP.No. 39				
1.	Area of a triangle	inscribed in a circle of ra	adius 4, if the measur	es of its angles are in t	he ratio 5: 4: 3 is				
	(A) $4(\sqrt{3}-\sqrt{2})$	(B) $4(\sqrt{3} + \sqrt{2})$	(C) $4(3-\sqrt{3})$	(D) $4(3+\sqrt{3})$					
2.		es with AB = AC and ∠ ∠MAB = 23º. The numbe (B) 67º			triangle so that				
3.	In $\triangle ABC$, the ratio $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ is not always equal to								
	(A) 2R, where R is	s the circumradius	(B) $\frac{abc}{2\Delta}$, where Δ	is the area of the tnan	gle				
	(C) $\frac{2}{3}(a^2 + b^2 + c^2)$	2 ²) ^{1/2}	(D) $\frac{(abc)^{\frac{2}{3}}}{(h_1h_2h_3)^{\frac{1}{3}}}$						
4.	If in a triangle AE	$3C$ angle $B = 90^{\circ}$ then ta							
	(A) $\frac{b-c}{a}$	(B) $\frac{b-c}{b+c}$	$(C) \frac{b+c}{b-c}$	(D) None					
5.	In triangle ABC th	he expansion $\frac{1}{4a^{2}b^{2}}$ (a	+ b + c) (b + c – a) (c -	⊦ a – b) (a + b – c) is e	qual to				
	(A) 2 sin ² C	the expansion $\frac{1}{4a^2b^2}$ (a) (B) 4 sin ² C	(C) sin ² C	(D) sin C . cos C					
6.		perpendiculars from the							
	respectively then	$\frac{bl}{c} + \frac{cm}{a} + \frac{an}{b}$ is equal t							
	$(A) \ \frac{a^2+b^2+c^2}{2R}$	(B) $\frac{ab+bc+ca}{R}$	$(C) \frac{(a+b+c)^2}{4R}$	(D) 4R (1 + cosA c	cosB cosC)				
7.	If the median of a	a triangle ABC through	A is perpendicular to	AB then $\frac{\tan A}{\tan B}$ has the	e value equal to				
	(A) 1/2	(B) 2	(C) – 2	(D) - 1/2					
8.	-	of a Δ are 22.5° and 11: ht of the triangle is	2.5°. The ratio of the						
	(A) $\sqrt{2}$	(B) 2	(C) (2√2−1)	(D) $\sqrt{2}$ +1					
9.		s of a triangle ABC be 5, hat tan \angle CAE = 3/8.	4, 3 respectively and	D, E are the points of t	risection of side				
10.	Let a, b, c be the equality hold ?	sides of a triangle & Δ	its area. Prove that a	$a^2 + b^2 + c^2 \ge 4\sqrt{3} \Delta.$	When does the				
11.	In a ∆ABC, let and value (b ⁻¹ + c ⁻¹ –	,		sircum radius of $\triangle ABC$	is 2 then find the				
4 5			ANSWERS						
1. D	2. D 3. C	4. B 5. C	6.A 7.	8. B 11 .0					

Vina	Vinay Kumar (B. Tech., IIT Delhi) Target IIT-JEE 2014								
Class	-	Date : 13		Batch : P		Time : 60 Min.	DPP.No. 40		
1.	•	ct of the arithmetics of the altitudes of Δ (B) 2 Δ	the triangle	is equal to :		a triangle and hai (D) 4 Δ	rmonic mean of		
2.		$(BC, AA_1 and AA_2 a)$		()			is equal to-		
۷.						. –			
	(A) $\frac{ a^2 - c^2 }{2b}$	(B) $\frac{ a^2 }{2}$	<u>– D[–] </u> 2c	(C) $\frac{ b^{-}-c^{-} }{2a}$		(D) None of these			
3.	-	e ABC, CH and CM 32 then length (H (B) 7	-	ths of the altitu		median to the bas (D) none	e AB. If a = 10,		
Comr	prehension			(0) 0					
	Consider a divides AC the circumo	triangle ABC with internally in the ratio circle of the triangle	o 1 : 2. A circle BCD at D.	e of radius 2 pa	sses thro				
4.	If E is the ce	entre of the circle w	ith radius 2 th	nen angle EDA	equals				
	(A) $\sin^{-1}\left(\frac{Y}{2}\right)$	$\left(\frac{\sqrt{15}}{4}\right)$ (B) sin ⁻⁷	$\left(\frac{3}{4}\right)$	(C) $\sin^{-1}\left(\frac{1}{4}\right)$		(D) $\sin^{-1}\left(\frac{15}{16}\right)$			
5.	If F is the ci	rcumcentre of the tr	iangle BDC th	nen which one o	of the follo	owing does not hold	d good ?		
	(A) ∠FCD =	$=\sin^{-1}\left(\frac{\sqrt{15}}{4}\right)$		(B) ∠FDC = c	$\cos^{-1}\left(\frac{1}{4}\right)$				
	(C) triangle	DFC is an isoscele	s triangle	(D) Area of ΔA	ADE = (1/	/4) th of the area of	∆DBC		
6.	If R is the ci	rcumradius of the	ABC, then R	equal					
	(A) 4	(B) 6		$(C) 2\left(\sqrt{\frac{61}{15}}\right)$		(D) $4\left(\sqrt{\frac{61}{15}}\right)$			
Comp	orehension				. .				
	In the figure $AC = 12 \text{ un}$	e below, it is given its.	that $\angle C = 9C$)°, AD≌ DB, EL) is perpe	endicular to AB, AE	3 = 20 units and		
7.	Area of tria	ngle AEC is				E			
	(A) 24 sq. u	inits		(B) 21 sq. uni	its				
	(C) 42 sq. u	inits		(D) $\frac{21}{2}$ sq. un	nits	Αββ	Ϋ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́		
8.	The value of	of tan ($\delta + \beta$) is				D			
	$(A) - \frac{177}{44}$	(B) 17		(C) $\frac{3}{4}$		(D) $\frac{5}{4}$			
9.	The value of	of $\cos(\alpha + \beta)$ is							
	(A) $\frac{4}{5}$	(B) $\frac{3}{5}$		(C) 117 125		$(D) - \frac{44}{125}$			
			A	NSWERS					
1. B	2. C	3. C 4. A	5. D	6.C 7.E	3 8 .	A 9. B			
		VKR Classes , C-33	39-340. Indr	a Vihar, Kota.	Mob.	No. 9829036305			

Vinay Kumar (B. Tech., IIT Delhi)						Target IIT-JEE 2014			
Class	s XI		Date : 15-	09- 12	Batch	: P	Time : 60 Mi	n.	DPP.No. 41
1.		BC, if tan A ai s) good?	nd tan B are	the roots	of the equat	ion ab(x ² + 1)	$= c^2 x$, then w	hich of	the following
	(A) sii	n ³ C + cot ³ C =	1 (B) cos ²	A + cos ² B	= 1 (C) tan(/	$(A - B) = \frac{a^2 - b}{2ab}$	$\frac{b^2}{D}$ (D) R	+r= -	$\frac{a+b}{2}$
2.	Assertion (A): Suppose ABC is a triangle such that $AB = 13$, $BC = 15$ and $CA = 14$. D is the midpoi BC, E is the midpoint of AD, F is the midpoint of BE, and G is the midpoint of DF. Then the are triangle EFG is 21/4.								
	Reas	on (R): ΔΕFG	$G = \frac{1}{2} \Delta DEF$	$=\frac{1}{4} \Delta BD$	$E = \frac{1}{8} \Delta AB$	$D = \frac{1}{16} \text{ ABC.}$			
3.	Asse	ngle is inscrib r tion (A): The on (R): Area	e radius R ha	s an irrati	onal value.		of the triangle	are 7,8	8 and 9 units,
Comp	orehen				_				
4.		iangle ABC, I of the triangle			tan C = 3 ai	nd c = 3.			
	(A) 3	$\frac{\sqrt{2}}{2}$	(B) 3		(C) $2\sqrt{3}$ (D) $3\sqrt{2}$				
5.	The ra	adius of the c	ircle circums	cribing the	e triangle AB	C, is equal to			
	(A) $\frac{\sqrt{10}}{2}$ (B) $\sqrt{5}$ (C) $\sqrt{10}$						(D) $\frac{\sqrt{5}}{2}$		
6.	Let Δ equal		rea of the tri	angle ABC	C and Δ_p be γ	the area of its	s pedal triangle	e. If $\Delta =$	$k\Delta_{\rm p}$ then k is
	(A) √	10	(B) _{2√5}		(C) 5		(D) _{2√10}		
7.	(A)	Column - I In a ∆ ABC	if 3 R = 4r the	en the val	ue of 4(cosA	+ cosB + cos	sC) is equal to	Colu (P)	mn - II 5
	(B)	A triangle h	as sides of le	engths 1, 2	2 and $\sqrt{7}$. If	the length of t	he internal	(Q)	7
						to the side ler			
		can be expi	essed as rat	ional in th	e lowest forr	n <u>m</u>			
			lue of $(m + n)$		e loweet lon	'' n			
	(C)		. ,		angle ABC.			(R)	10
	(0)	(C) Let H be the orthocentre of the triangle ABC. If $(AH)^2 + (BH)^2 + (CH)^2 + (AB)^2 + (BC)^2 + (CA)^2 = kR^2$ then					k equals	(14)	
	(D) Consider a triangle ABC and let a, b and c denote the less sides opposite to the vertices A, B and C respectively. I the roots of $t^3 - 12t^2 + 47t = 60$,					ectively. If a, b		(S) (T)	12 15
		then the va	lue of $24\left(\frac{co}{c}\right)$	$\frac{sA}{a} + \frac{\cos}{b}$	$\frac{B}{c} + \frac{\cos C}{c}$ i	s equal to			
					ANSWERS				
1. AB0	CD 2./	3.	4. B	5. A	6. C	7. (A)–Q, (E	B)-P, (C)-S, (D))–R	

Daily Practice Problems

	ay Kumar (в. те			Target IIT		
Class		Date : 18- 09- 12	Batch : P	Time : 60 Min.	DPP.No. 42	
1.			angled at C. The circle and 13 respectively. Are (C) 100	u		
2.	Let ABC be a right t	riangle with $\angle BAC = S$	90° then $\left(\frac{r^2}{2R^2} + \frac{r}{R}\right)$ is	equal to		
	(A) sin B sin C	(B) tan B tan C	(C) sec B sec C	(D) cot B cot C		
3.	bisector I _C intersect (A) $\sqrt{3} - 1$		nits, AC of length 1 unit pint D. The length AD is (B) $\sqrt{3} + 1$		unit. The angle	
	(C) $\frac{2}{3}$		(D) $\sqrt{3}(\sqrt{3}-1)$	A D	B	
4.	In $\triangle ABC$, $2R + r = r$.	I				
	Assertion (A): $\begin{pmatrix} 1 - \end{pmatrix}$	$\frac{r_1}{r_2}\left(1-\frac{r_1}{r_3}\right)=2$				
	Reason (R): △AB	C is right angled at A.				
5.		ABC, if $r_1 = 2r_2 = 3r_3$ the ABC, if $xr_1 = yr_2 = zr_3 = 2r_3$	nen a: b: c = 5 : 4 : 3 =(x + y + z)r, then a : b :	c = y+ z : x + z : x + y		
6.	With usual notation	s, in a $\triangle ABC$ the value	e of $\Pi(r_1 - r)$ can be sim	plified as:		
	(A) abc Π tan $\frac{A}{2}$	(B) 4 r R ²	(C) $\frac{(a b c)^2}{R(a b c)^2}$	(D) 4 R r ²		
7.		sircle is inscribed who gle C then the radius	se diameter lies on the of the semicircle is	e side c. If x is the len	gth of the angle	
	(A) $\frac{abc}{4R^2(\sin A + \sin B)}$	$\overline{3}$ (B) $\frac{\Delta}{x}$				
	(C) x sin $\frac{C}{2}$		(D) $\frac{2\sqrt{s(s-a)(s-b)}}{s}$	D)(S−C)		
8.		5. (B) Product of the	h of the following is/are sides of the ∆ABCis 60 (D) Sum of the ex-r			
9.	In $\triangle ABC$ if $B = \pi/2$, (A) r = 1	$s - a = 3; s - c = 2, the(B) \Delta = 12$	en which of the followin $(C) r_1 = 2$	ig hold good? (D) R = 5/2		
10.	meaning.	. ,	with respect to a triang			
	(B) abc = $\frac{1}{4}$ Rrs		(C) If r = 3 then the	value of $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} =$	<u>1</u> 3	
	(D) If the diameter angle.		al to the perimeter of t	he triangle then the ti	riangle is a right	
4 ^			ANSWERS		10 000	
1. A	2. A 3. A	4. A 5. A	6. ACD 7. AC	8. ABCD 9. ACD	10. ACD	

Vina	Vinay Kumar (B. Tech., IIT Delhi) Target IIT-JEE 2014							
Class	s XI		Date : 20- 09- 12	Batch	P	Time : 60 M	lin.	DPP.No. 43
1.	ABC i angle	•	led triangle with circ	cumcentre 'O' o	rthocentre H.	If $AO = AH$ the	en the m	easure of the
_	(A) $\frac{\pi}{6}$		(B) $\frac{\pi}{4}$	0		•=		
2.			ths of altitudes drav		s A, B, C to sid	des BC CA an	d AB res	pectively. The
	minim	num value of $\frac{a}{h}$	$\frac{h}{a} + \frac{b}{h_b} + \frac{c}{h_c}$ is equal	al to				
	(A) √	3	(B) 2 \(3	(C) 3 √3		(D) $4\sqrt{3}$		
3.	(A) Δ (B) Δ (C) Δ	ABC is an obt ABC is an acu ABC could be	f a \triangle ABC lies on it use angled triangle te angled triangle an acute or obtus nat II cosA vanishe	e e angled trianç	gle	ntinued prod	uct .	
4.	(A) or	data given to c hly one triangle finitely many tr		ABC is a = 5, b (B) two tr (D) no tria	iangles	3/4, then it is p	ossible	to construct-
5.		sides a, b and i ird side is	the angle A be such	that two triang	les are forme	d, then the su	m of the	two values of
	(A) b ²	$-a^2$	(B) 2b cos A	(C) 2b sir	hΑ	(D) $\frac{b-c}{b-c}$		
6.	angle	'A' is :	BC if the altitudes i	ntersect on the		rcle then the	cosine d	of the vertical
_	(A) 1.		(B) 1/3	(C) 2/3		(D) none	• •	
7.		Column - I					Colui	mn - II
	(A)	If 'O' is the ci	rcumcentre of the 2	ABC and R_1, F	R_2 and R_3 are	the radii	(P)	R
		of the circum	circles of triangles	OBC, OCA and	OAB respec	tively then		
		$\frac{a}{R_1} + \frac{b}{R_2} + \frac{c}{R_3}$	$\frac{1}{3}$ has the value eq	ual to				
	(B)	AD, BE and (CF are the perpend	liculars from the	e angular poir	nts of a	(Q)	$\frac{4\Delta}{R^2}$
		ΔABC upon tand ΔABC and	he opposite sides. re in the ratio	The perimeters	s of the ∆DEF			К
	(C)	If the incircle	of the $\triangle ABC$ touch	ies its sides res	pectively at L	., M and N	(R)	$\frac{R}{2r}$
	and if x , y , z be the circumradii of the triangles MIN, NIL and LIM						(S)	$\frac{\Delta}{4R^2}$
		where I is the	e incentre then the	value of $\frac{XYZ}{r^3}$, is	6			
	-	D -		ANSWERS	- /			
1. C	2.	B 3. D	4. D 5. B	6. A	7. (A)–Q, (B	s)–P, (C)–R		

9. Two circles are passing through vertex A of triangle ABC and one of the circle touches the side BC at B and other circle touches the side BC at C. If a = 5 and $\angle A = 30^{\circ}$ then find the product of radii of two circles.

ANSWERS 4. D 5. C 6. A 7. C 8. ABCD 9. 25