MATHEMATICS Target IIT-JEE 2016 Class XII

Matrices

VKR SIR
 B. Tech., IIT Delhi

Matrices

1. For the following pairs of matrices, determine the sum and difference, if they exist.
(a) $\quad \mathrm{A}=\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 1 & 3\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{ccc}2 & 1.5 & 6 \\ -3 & 2+\mathrm{i} & 0\end{array}\right)$
(b) $\quad A=\left(\begin{array}{cc}1 & 0 \\ 3 & -4\end{array}\right) \quad B=\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & -2 & 0\end{array}\right)$

Solution: (a) Matrices A and B are 2×3 and conformable for addition and subtraction.

$$
\begin{aligned}
& A+B=\left(\begin{array}{ccc}
1+2 & -1+1.5 & 2+6 \\
0+-3 & 1+2+i & 3+0
\end{array}\right)=\left(\begin{array}{ccc}
3 & 0.5 & 8 \\
-3 & 3+i & 3
\end{array}\right) \\
& A-B=\left(\begin{array}{ccc}
1-2 & -1-1.5 & 2-6 \\
0-(-3) & 1-(2+i) & 3-0
\end{array}\right)=\left(\begin{array}{ccc}
-1 & -2.5 & -4 \\
3 & -1-i & 3
\end{array}\right)
\end{aligned}
$$

(b) Matrix A is 2×2, and B is 2×3. Since A and B are not the same size, they are not conformable for addition or subtraction.
2. Find the additive inverse of the matrix $\quad A=\left[\begin{array}{cccc}2 & 3 & -1 & 1 \\ 3 & -1 & 2 & 2 \\ 1 & 2 & 8 & 7\end{array}\right]$.

Solution: The additive inverse of the 3×4 matrix A is the 3×4 matrix each of whose elements is the negative of the corresponding element of A. Therefore if we denote the additive inverse of A by A, we have

$$
-A=\left[\begin{array}{cccc}
-2 & -3 & 1 & -1 \\
-3 & 1 & -2 & -2 \\
-1 & -2 & -8 & -7
\end{array}\right]
$$

Obviously $A+(-A)=(-A)+A=O$, where O is the null matrix of the type 3×4.
3. If $A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2 \\ 2 & 5\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}-1 & -2 \\ 0 & 5 \\ 3 & 1\end{array}\right]$, find the matrix D such that $A+B-D=0$.

Solution: We have $A+B-D=0$
$\Rightarrow \quad(A+B)+(-D)=0 \Rightarrow A+B=(-D)=D$
Therefore $D=A+B=\left[\begin{array}{ll}0 & 2 \\ 3 & 7 \\ 5 & 6\end{array}\right]$.
4. If $A=\left[\begin{array}{ccc}3 & 9 & 0 \\ 1 & 8 & -2 \\ 7 & 5 & 4\end{array}\right], B=\left[\begin{array}{lll}4 & 0 & 2 \\ 7 & 1 & 4 \\ 2 & 2 & 6\end{array}\right]$, verify that $3(A+B)=3 A+3 B$.

Solution : We have $A+B=\left[\begin{array}{ccc}3+4 & 9+0 & 0+2 \\ 1+7 & 8+1 & -2+4 \\ 7+2 & 5+7 & 4+6\end{array}\right]=\left[\begin{array}{ccc}7 & 9 & 2 \\ 8 & 9 & 2 \\ 9 & 7 & 10\end{array}\right]$

$$
\begin{aligned}
& \therefore \quad 3(A+B)=\left[\begin{array}{lll}
3 \times 7 & 3 \times 9 & 3 \times 2 \\
3 \times 8 & 3 \times 9 & 3 \times 2 \\
3 \times 9 & 3 \times 7 & 3 \times 10
\end{array}\right]=\left[\begin{array}{ccc}
21 & 27 & 6 \\
24 & 27 & 6 \\
27 & 21 & 30
\end{array}\right] . \\
& \text { Again } 3 A=3\left[\begin{array}{ccc}
3 & 9 & 0 \\
1 & 8 & -2 \\
7 & 5 & 4
\end{array}\right]=\left[\begin{array}{ccc}
3 \times 3 & 3 \times 9 & 3 \times 0 \\
3 \times 1 & 3 \times 8 & 3 \times-2 \\
3 \times 7 & 3 \times 5 & 3 \times 4
\end{array}\right]=\left[\begin{array}{ccc}
9 & 27 & 0 \\
3 & 24 & -6 \\
21 & 15 & 12
\end{array}\right] \\
& \text { Also 3B }=3\left[\begin{array}{lll}
4 & 0 & 2 \\
7 & 1 & 4 \\
2 & 2 & 6
\end{array}\right]=\left[\begin{array}{ccc}
3 \times 4 & 3 \times 0 & 3 \times 2 \\
3 \times 7 & 3 \times 1 & 3 \times 4 \\
3 \times 2 & 3 \times 2 & 3 \times 6
\end{array}\right]=\left[\begin{array}{ccc}
12 & 0 & 6 \\
21 & 3 & 12 \\
6 & 6 & 18
\end{array}\right] \\
& \therefore \\
& \quad 3 A+3 B=\left[\begin{array}{ccc}
9 & 27 & 0 \\
3 & 24 & -6 \\
21 & 15 & 12
\end{array}\right]+\left[\begin{array}{ccc}
12 & 0 & 6 \\
21 & 3 & 12 \\
6 & 6 & 18
\end{array}\right] \\
& {\left[\begin{array}{lll}
9+12 & 27+0 & 0+6 \\
3+21 & 24+3 & -6+12 \\
21+6 & 15+6 & 12+18
\end{array}\right]=\left[\begin{array}{ccc}
21 & 27 & 6 \\
24 & 27 & 6 \\
27 & 21 & 30
\end{array}\right] 3 \times 3 .}
\end{aligned}
$$

$\therefore \quad 3(A+B)=3 A+3 B$, i.e. the scalar multiplication of matrices distributes over the addition of matrices.
5. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$, find $A B$ and $B A$ and show that $A B \neq B A$.

Solution: We have

$$
A B=\left[\begin{array}{ccc}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
2.1-3.1+4.0 & 2.3+3.2+4.0 & 2.0+3.1+4.2 \\
1.1-2.1+3.0 & 1.3+2.2+3.0 & 1.0+2.1+3.2 \\
-1.1-1.1+2.0 & -1.3+1.2+2.0 & -1.0+1.1+2.2
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 12 & 11 \\
-1 & 7 & 8 \\
-2 & -1 & 5
\end{array}\right]
$$

Similarly, $B A=\left[\begin{array}{ccc}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right]$

$$
=\left[\begin{array}{ccc}
1.2+3.1-0.1 & 1.3+3.2+0.1 & 1.4+3.3+0.2 \\
-1.2+2.1-1.1 & -1.3+2.2+1.1 & -1.4+2.3+1.2 \\
0.2+0.1-2.1 & 0.3+0.2+2.1 & 0.4+0.3+2.2
\end{array}\right]=\left[\begin{array}{ccc}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4
\end{array}\right]
$$

The matrix $A B$ is of the type 3×3 and the matrix $B A$ is also of the type 3×3. But the corresponding elements of these matrices are not equal. Hence $A B \neq B A$.
6. Show that for all values of p, q, r, s the matrices, $P=\left[\begin{array}{cc}p & q \\ -q & p\end{array}\right]$, and $Q=\left[\begin{array}{cc}r & s \\ -s & r\end{array}\right]$ commute.

Solution: $\quad W e$ have $P Q=\left[\begin{array}{cc}p r-q s & p s+q r \\ -q r-p s & -q s+p r\end{array}\right]$.
Also $\quad \mathrm{QP}=\left[\begin{array}{cc}r & s \\ -s & r\end{array}\right]\left[\begin{array}{cc}p & q \\ -q & p\end{array}\right]=\left[\begin{array}{cc}r p-s q & r q+s p \\ -s p-r q & -s q+r p\end{array}\right]=\left[\begin{array}{cc}p r-q s & p s+p q \\ -q r-p s & -q s+p r\end{array}\right]$ for all values of p, q, r, s.
Hence $P Q=Q P$, for all values of p, q, r, s.
7. If $\mathrm{A}=\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cccc}1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cccc}2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0\end{array}\right]$
show that $A B=A C$ though $B \neq C$.
Solution : We have $A B=\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1\end{array}\right] \times\left[\begin{array}{cccc}1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2\end{array}\right]$
$=\left[\begin{array}{cccc}1.1-3.2+2.1 & 1.4+3.1-2.2 & 1.1-3.1+2.1 & 1.0-3.1+2.2 \\ 2.1+1.2-3.1 & 2.4+1.1+3.2 & 2.1+1.1-3.1 & 2.0+1.1-3.2 \\ 4.1-3.2-1.1 & 4.4-3.1+1.2 & 4.1-3.1-1.1 & 4.0-3.1-1.2\end{array}\right]=\left[\begin{array}{cccc}-3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5\end{array}\right]$.
Also $\quad A C=\left[\begin{array}{ccc}1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1\end{array}\right] \times\left[\begin{array}{cccc}2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0\end{array}\right] \quad=\left[\begin{array}{cccc}-3 & -3 & 0 & 1 \\ 1 & 15 & 0 & -5 \\ -3 & 15 & 0 & -5\end{array}\right]$
$\therefore \quad A B=A C$, though $B \neq C$.
8. If $A=\left[\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right]$, then $A^{k}=\left[\begin{array}{cc}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$, where k is any positive integer.

Solution : We shall prove the result by induction on k.
We have

$$
A_{1}=A=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
1+2.1 & -4.1 \\
1 & 1-2.1
\end{array}\right]
$$

Thus the result is true when $\mathrm{k}=1$.
Now suppose that the result is true for any positive integer k i.e., $A^{k}=\left[\begin{array}{cc}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$ where k is any positive integer.
Now we shall show that the result is true for $k+1$ if it is true for k. We have

$$
\begin{aligned}
& A^{k+1}=A A^{k}=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1+2 k & -4 k \\
k & 1-2 k
\end{array}\right] \quad=\left[\begin{array}{cc}
3+6 k-4 k & -12 k-4+8 k \\
1+2 k-k & -4 k-1+2 k
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+2+2 k & -4-4 k \\
1+k & -2 k-1
\end{array}\right]=\left[\begin{array}{cc}
1+2(k+1) & -4(1+k) \\
1+k & 1-2(1+k)
\end{array}\right] .
\end{aligned}
$$

Thus the result is true for $k+1$ if it is true for k. But it is true for $k=1$. Hence by induction it is true for all positive integral value of k.
9. Find real numbers c_{1} and c_{2} so that $I+c_{1} M+c_{2} M^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ where $M=\left[\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right]$ and I is the identity matrix.

Solution : $\quad M^{2}=\left[\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 9 \\ 0 & 4\end{array}\right]$

$$
\begin{aligned}
& I+c_{1} M+c_{2} M^{2}=\left[\begin{array}{cc}
1+c_{1}+c_{2} & 3 c_{1}+9 c_{2} \\
0 & 1+2 c_{1}+4 c_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \Rightarrow \quad c_{1}+c_{2}=-1 \text { and } 3\left(c_{1}+c_{2}\right)+6 c_{2}=0 \\
& \Rightarrow \quad c_{2}=1 / 2, c_{1}=-3 / 2 \quad 1
\end{aligned}
$$

10. If $\left[\begin{array}{lll}1 & 2 & \mathrm{a} \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]^{\mathrm{n}}=\left[\begin{array}{ccc}1 & 18 & 2007 \\ 0 & 1 & 36 \\ 0 & 0 & 1\end{array}\right]$ then find the value of $(\mathrm{n}+\mathrm{a})$.
[Ans. 200]

Solution: Consider $\left[\begin{array}{lll}1 & 2 & \mathrm{a} \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & \mathrm{a} \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 4 & 2 \mathrm{a}+8 \\ 0 & 1 & 8 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & \mathrm{a} \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 6 & 3 \mathrm{a}+24 \\ 0 & 1 & 12 \\ 0 & 0 & 1\end{array}\right]$
$\therefore \quad\left[\begin{array}{lll}1 & 2 & \mathrm{a} \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]^{\mathrm{n}}=\left[\begin{array}{ccc}1 & 2 \mathrm{n} & \mathrm{na}+8 \sum_{\mathrm{k}=0}^{\mathrm{n}-1} \mathrm{k} \\ 0 & 1 & 4 \mathrm{n} \\ 0 & 0 & 1\end{array}\right]^{\mathrm{n}}$
hence $\mathrm{n}=9$ and $\quad 2007=9 \mathrm{a}+8 \sum_{\mathrm{k}=0}^{8} \mathrm{k}=9 \mathrm{a}+8\left(\frac{8 \cdot 9}{2}\right)$

$$
2007=9 a+32 \cdot 9=9(a+32) \quad a+32=223 \Rightarrow a=191 \text { hence } a+n=200
$$

11. Find the matrices of transformations $T_{1} T_{2}$ and $T_{2} T_{1}$, when T_{1} is rotation through an angle $60 \circ$ and T_{2} is the reflection in the y-axis. Also verify that $T_{1} T_{2} \neq T_{2} T_{1}$.
Solution: $\quad T_{1}=\left[\begin{array}{cc}\cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ}\end{array}\right] \quad=\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right]$
and $\quad T_{2}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \quad \therefore \quad T_{1} T_{2}=\frac{1}{2}\left[\begin{array}{cc}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right] \times\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \quad=\frac{1}{2}\left[\begin{array}{cc}-1+0 & 0-\sqrt{3} \\ -\sqrt{3}+0 & 0+1\end{array}\right]$
$=\left[\begin{array}{cc}-1 & -\sqrt{3} \\ -\sqrt{3} & 1\end{array}\right]=\left[\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ -\sqrt{3} / 2 & 1 / 2\end{array}\right]$
and $\quad T_{2} T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \times \frac{1}{2}\left[\begin{array}{cc}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}-1+0 & \sqrt{3}+0 \\ 0+\sqrt{3} & 0+1\end{array}\right] \quad=\frac{1}{2}\left[\begin{array}{cc}-1 & \sqrt{3} \\ \sqrt{3} & 1\end{array}\right]$

$$
=\left[\begin{array}{cc}
-1 / 2 & \sqrt{3} / 2 \tag{2}\\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]
$$

It is clear from (1) and (2), $\quad T_{1} T_{2} \neq T_{2} T_{1}$
12. Find the possible square roots of the two rowed unit matrix I.

Solution : Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be square root of the matrix $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Then $A^{2}=I$.
i.e. $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad$ i.e. $\quad\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & c b+d^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Since the above matrices are equal, therefore
$a^{2}+b c=1$
$a b+b d=0$

$$
\begin{align*}
& a c+c d=0 \tag{i}\\
& c b+d^{2}=0 \tag{ii}
\end{align*}
$$

must hold simultaneously.
If $a+d=0$, the above four equations hold simultaneously if $d=-a$ and $a^{2}+b c=1$.
Hence one possible square root of I is
$A=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ where α, β, γ are any three numbers related by the condition $\alpha^{2}+\beta \gamma=1$.
If $a+d \neq 0$, the above four equations hold simultaneously if $b=0, c=0, a=1, d=1$ or if $b=0, c=0, a=-1, d=-1$.

$$
\text { Hence }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

i.e. $\quad \pm l$ are other possible square roots of I.
13. Show that the matrix $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ is nilpotent and find its index.

Solution : We have $A^{2}=A A\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right] \times\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3\end{array}\right]$
Again $A^{3}=A A^{2}=\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=0$.
Thus 3 is the least positive integer such that $A^{3}=0$. Hence the matrix A is nilpotent of index 3 .
14. If $A B=A$ and $B A=B$ then $B^{\prime} A^{\prime}=A^{\prime}$ and $A^{\prime} B^{\prime}=B^{\prime}$ and hence prove that A^{\prime} and B^{\prime} are idempotent.

Solution: \quad We have $A B=A \Rightarrow(A B)^{\prime}=A^{\prime} \Rightarrow B^{\prime} A^{\prime}=A^{\prime}$.

$$
\text { Also } B A=B \Rightarrow(B A)^{\prime}=B^{\prime} \Rightarrow A^{\prime} B^{\prime}=B^{\prime} \text {. }
$$

Now A^{\prime} is idempotent if $A^{\prime 2}=A^{\prime}$. We have

$$
\mathrm{A}^{\prime 2}=\mathrm{A}^{\prime} \mathrm{A}^{\prime}=\mathrm{A}^{\prime}\left(\mathrm{B}^{\prime} \mathrm{A}^{\prime}\right)=\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right) \mathrm{A}^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}=\mathrm{A}^{\prime} .
$$

$\therefore \quad A^{\prime}$ is idempotent.
Again $B^{\prime 2}=B^{\prime} B^{\prime}=B^{\prime}\left(A^{\prime} B^{\prime}\right)=\left(B^{\prime} A^{\prime}\right) B^{\prime}=A^{\prime} B^{\prime}=B^{\prime}$.
$\therefore \quad \mathrm{B}^{\prime}$ is idempotent.
15. Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]^{\mathrm{n}}=\left(\mathrm{a}_{i j}(\mathrm{n})\right)$. If $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \frac{\mathrm{a}_{12}(\mathrm{n})}{\mathrm{a}_{22}(\mathrm{n})}=/$ where $P=\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}} \quad(\mathrm{a}, \mathrm{b} \in \mathrm{N})$, find the value of $(a+b)$.
[Ans. 17]
Solution : \quad Suppose $A_{1}=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=I+B$ (say) hence $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]^{n}=(1+B)^{n}$

$$
\therefore \quad \mathrm{A}=\left[\begin{array}{ll}
2 & 1 \tag{1}\\
1 & 0
\end{array}\right]^{\mathrm{n}}={ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{I}+{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{~B}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{~B}^{2}+{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{~B}^{3}+{ }^{\mathrm{n}} \mathrm{C}_{4} \mathrm{~B}^{4}+\ldots \ldots . .
$$

now $\left.\quad B^{2}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=2 \right\rvert\,$
Hence $B^{2 k}=2^{k} \quad$ and $B^{2 k+1}=B^{2 k} B=2^{k} B$

$$
\begin{aligned}
& \text { now } \quad\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]^{\mathrm{n}}=\underbrace{\left({ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{2} \cdot 2+{ }^{\mathrm{n}} \mathrm{C}_{4} \cdot 22^{2}+\ldots \ldots\right) \mathrm{I}}_{\text {X' say }}+\underbrace{\left({ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{3} \cdot 2+{ }^{\mathrm{n}} \mathrm{C}_{5} \cdot 2^{2}+\ldots \ldots .\right)}_{\mathrm{Y}^{\prime} \text { say }} \mathrm{B} \\
& \therefore \quad\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]^{\mathrm{n}}=\left[\begin{array}{cc}
\mathrm{X} & 0 \\
0 & \mathrm{X}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{Y} & \mathrm{Y} \\
\mathrm{Y} & -\mathrm{Y}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{X}+\mathrm{Y} & \mathrm{Y} \\
\mathrm{Y} & \mathrm{X}-\mathrm{Y}
\end{array}\right]
\end{aligned}
$$

Hence a_{12} in $\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]^{n}=Y \quad \therefore \quad a_{12}={ }^{n} C_{1}+{ }^{n} C_{3} \cdot 2+{ }^{n} C_{5} \cdot 2^{2}+{ }^{n} C_{7} \cdot 2^{3}+\ldots \ldots .$.
|||ly

$$
=\frac{1}{\sqrt{2}}\left[{ }^{n} C_{1} \cdot \sqrt{2}+{ }^{n} C_{3} \cdot(\sqrt{2})^{3}+{ }^{\mathrm{n}} \mathrm{C}_{5} \cdot(\sqrt{2})^{5}+\ldots \ldots . .\right]=\frac{1}{\sqrt{2}}\left[\frac{(1+\sqrt{2})^{\mathrm{n}}-(1-\sqrt{2})^{\mathrm{n}}}{2}\right]
$$

111

$$
\begin{aligned}
\mathrm{a}_{22} & =\mathrm{X}-\mathrm{Y} \\
& =\left({ }^{n} C_{0}+{ }^{n} C_{2} \cdot 2+{ }^{n} C_{4} \cdot 2^{2}+{ }^{n} C_{6} \cdot 2^{3}+\ldots \ldots\right)-\left({ }^{n} C_{1}+{ }^{n} C_{3} \cdot 2+{ }^{n} C_{5} \cdot 2^{2}+{ }^{n} C_{7} \cdot 2^{3}+\ldots \ldots\right)
\end{aligned}
$$

$$
=\frac{(1+\sqrt{2})^{\mathrm{n}}+(1-\sqrt{2})^{\mathrm{n}}}{2}-\frac{(1+\sqrt{2})^{\mathrm{n}}-(1-\sqrt{2})^{\mathrm{n}}}{2 \sqrt{2}}
$$

$$
=\frac{\sqrt{2}\left[(1+\sqrt{2})^{\mathrm{n}}+(1-\sqrt{2})^{\mathrm{n}}\right]-\left[(1+\sqrt{2})^{\mathrm{n}}-(1-\sqrt{2})^{\mathrm{n}}\right]}{2 \sqrt{2}}
$$

$$
\mathrm{a}_{22}=\frac{(\sqrt{2}-1)(1+\sqrt{2})^{\mathrm{n}}-(\sqrt{2}+1)(1-\sqrt{2})^{\mathrm{n}}}{2 \sqrt{2}}
$$

$$
\therefore \quad \operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \frac{\mathrm{a}_{12}}{\mathrm{a}_{22}}=\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \frac{(1+\sqrt{2})^{\mathrm{n}}-(1-\sqrt{2})^{\mathrm{n}}}{(\sqrt{2}-1)(1+\sqrt{2})^{\mathrm{n}}+(\sqrt{2}+1)(1-\sqrt{2})^{\mathrm{n}}}
$$

$$
=\operatorname{Lim}_{n \rightarrow \infty} \frac{1-\left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)^{\mathrm{n}}}{(\sqrt{2}-1)+(\sqrt{2}+1)\left(\frac{1-\sqrt{2}}{1+\sqrt{2}}\right)^{\mathrm{n}}}=\frac{1-0}{\sqrt{2}-1}=1+\sqrt{2}
$$

hence $R=(1+\sqrt{2})^{2}=3+2 \sqrt{2}=\sqrt{9}+\sqrt{8}$. Hence $a+b=9+8=17$ Ans.
16. Prove that $\Delta \equiv\left|\begin{array}{lll}1 & b c+a d & b^{2} c^{2}+a^{2} d^{2} \\ 1 & c a+b d & c^{2} a^{2}+b^{2} d^{2} \\ 1 & a b+c d & a^{2} b^{2}+c^{2} d^{2}\end{array}\right|=(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$.

Solution: Applying $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$, we get
$\Delta=\left|\begin{array}{ccc}1 & b c+a d & b^{2} c^{2}+a^{2} d^{2} \\ 1 & (a-b)(c-d) & \left(a^{2}-b^{2}\right)\left(c^{2}-d^{2}\right) \\ 1 & (a-c)(b-d) & \left(a^{2}-c^{2}\right)\left(b^{2}-d^{2}\right)\end{array}\right|=\left|\begin{array}{cc}(a-b)(c-d) & (a-b)(a+b)(c-d)(c+d) \\ (a-c)(b-d) & (a-c)(a+c)(b-d)(b+d)\end{array}\right|$
$=(a-b)(c-d)(a-c)(b-d)\left|\begin{array}{ll}1 & (a+b)(c+d) \\ 1 & (a+c)(b+d)\end{array}\right|$
$=(a-b)(c-d)(a-c)(b-d)[(a+c)(b+d)-(a+b)(c+d)]$
$=(a-b)(c-d)(a-c)(b-d)(a b+c d-a c-b d)$
$=(a-b)(a-c)(a-d)(b-c)(b-d)(c-d)$.
17. Show that,

$$
\left|\begin{array}{ccc}
y z-x^{2} & z x-y^{2} & x y-y^{2} \\
z x-y^{2} & x y-z^{2} & y z-x^{2} \\
x y-z^{2} & y z-x^{2} & z x-y^{2}
\end{array}\right|=\left|\begin{array}{ccc}
r^{2} & u^{2} & u^{2} \\
u^{2} & r^{2} & u^{2} \\
u^{2} & u^{2} & r^{2}
\end{array}\right|
$$

$$
\text { where } \quad r^{2}=x^{2}+y^{2}+z^{2} \quad \& \quad u^{2}=x y+y z+z x .
$$

Solution: Consider the determinant, $\Delta=\left|\begin{array}{lll}x & y & z \\ y & z & x \\ z & x & y\end{array}\right|$
We see that the L.H.S. determinant has its constituents which are the co-factor of Δ. Hence L.H.S. determinant

$$
=\left|\begin{array}{ccc}
x & y & z \\
y & z & x \\
z & x & y
\end{array}\right|\left|\begin{array}{ccc}
x & y & z \\
y & z & x \\
z & x & y
\end{array}\right|=\left|\begin{array}{ccc}
x^{2}+y^{2}+z^{2} & x y+y z+z x & x y+y z+z x \\
x y+y z+z x & y^{2}+z^{2}+x^{2} & y z+z x+x y \\
z x+x y+y z & y z+x z+x y & z^{2}+x^{2}+y^{2}
\end{array}\right|=\left|\begin{array}{ccc}
r^{2} & u^{2} & u^{2} \\
u^{2} & r^{2} & u^{2} \\
u^{2} & u^{2} & r^{2}
\end{array}\right|
$$

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{3} & y^{3} & z^{3}
\end{array}\right|=(x-y)(y-z)(z-x)(x+y+z)
$$

Solution : Let $D=\left|\begin{array}{ccc}1 & 1 & 1 \\ x & y & z \\ x^{3} & y^{3} & z^{3}\end{array}\right|$ for $x=y, D=0$ (since C_{1} and C_{2} are identical)
Hence $(x-y)$ is a factor of $D(y-z)$ and $(z-x)$ are factors of D. But D is a homogeneous expression of the 4th degree is x, y, z.
\therefore There must be one more fator of the 1 st degree in x, y, z say $k(x+y+z)$ where k is a constant. Let $D=k(x-y)(y-z)(z-x)(x+y+z)$
Putting $x=0, y=1, z=2$
then $\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 8\end{array}\right|=k(0-1)(1-2)(2-0)(0+1+2)$

$$
\Rightarrow \quad \mathrm{L}(8-2)=\mathrm{k}(-1)(-1)(2)(3) \quad \therefore \mathrm{k}=1 \quad \therefore \quad \mathrm{D}=(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x})(\mathrm{x}+\mathrm{y}+\mathrm{z})
$$

19. Express $\left|\begin{array}{lll}(1+a x)^{2} & (1+a y)^{2} & (1+a z)^{2} \\ (1+b x)^{2} & (1+b y)^{2} & (1+b z)^{2} \\ (1+c x)^{2} & (1+c y)^{2} & (1+c z)^{2}\end{array}\right|$ as product of two determinatnts.

Solution : \quad The given determinant is $=\left|\begin{array}{lll}1+2 a x+a^{2} x^{2} & 1+2 a y+a^{2} y^{2} & 1+2 a z+a^{2} z^{2} \\ 1+2 b x+b^{2} x^{2} & 1+2 b y+b^{2} y^{2} & 1+2 b z+b^{2} z^{2} \\ 1+2 c x+c^{2} x^{2} & 1+2 c y+c^{2} y^{2} & 1+2 c z+c^{2} z^{2}\end{array}\right|$
$=\left|\begin{array}{lll}1 & 2 a & a^{2} \\ 1 & 2 b & b^{2} \\ 1 & 2 c & c^{2}\end{array}\right| \times\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$, with the help of row-by-row multiplication rule.
20. Let $D=\left|\begin{array}{ccc}2 a_{1} b_{1} & a_{1} b_{2}+a_{2} b_{1} & a_{1} b_{3}+a_{3} b_{1} \\ a_{1} b_{2}+a_{2} b_{1} & 2 a_{2} b_{2} & a_{2} b_{3}+a_{3} b_{2} \\ a_{1} b_{3}+a_{3} b_{1} & a_{3} b_{2}+a_{2} b_{3} & 2 a_{3} b_{3}\end{array}\right|$.

Express the determinant D as a product of two determinants. Hence or otherwise show that $D=0$.

Solution : We have $D=\left|\begin{array}{lll}a_{1} & b_{1} & 0 \\ a_{2} & b_{2} & 0 \\ a_{3} & b_{3} & 0\end{array}\right| \times\left|\begin{array}{lll}b_{1} & a_{1} & 0 \\ b_{2} & a_{2} & 0 \\ b_{3} & a_{3} & 0\end{array}\right|$, as can be seen by applying row-by-row multiplication rule. Hence $\mathrm{D}=0$.
21. If $f(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{xy},(\mathrm{x}, \mathrm{y} \in \mathrm{R})$ and the matrix A is given by $\mathrm{A}=\left[\begin{array}{lll}f\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) & f\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right) & f\left(\mathrm{x}_{1}, \mathrm{y}_{3}\right) \\ f\left(\mathrm{x}_{2}, \mathrm{y}_{1}\right) & f\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) & f\left(\mathrm{x}_{2}, \mathrm{y}_{3}\right) \\ f\left(\mathrm{x}_{3}, \mathrm{y}_{1}\right) & f\left(\mathrm{x}_{3}, \mathrm{y}_{2}\right) & f\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\end{array}\right]$ such that trace $(A)=0$, then prove that det. $(A) \geq 0$.
Solution : $\operatorname{tr}(A)=0 \quad \Rightarrow \quad\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}=0$
$\Rightarrow \quad x_{1}=y_{1}, \quad x_{2}=y_{2}, \quad x_{3}=y_{3}$
$|A|=\left|\begin{array}{ccc}x_{1}^{2}-2 x_{1} y_{1}+y_{1}^{2} & x_{1}^{2}-2 x_{1} y_{2}+y_{2}^{2} & x_{1}^{2}-2 x_{1} y_{3}+y_{3}^{2} \\ x_{2}^{2}-2 x_{2} y_{1}+y_{1}^{2} & x_{2}^{2}-2 x_{2} y_{2}+y_{2}^{2} & x_{2}^{2}-2 x_{2} y_{3}+y_{3}^{2} \\ x_{3}^{2}-2 x_{3} y_{1}+y_{1}^{2} & x_{3}^{2}-2 x_{3} y_{2}+y_{2}^{2} & x_{3}^{2}-2 x_{3} y_{3}+y_{3}^{2}\end{array}\right|=\left|\begin{array}{ccc}x_{1}^{2} & -2 x_{1} & 1 \\ x_{2}^{2} & -2 x_{2} & 1 \\ x_{3}^{2} & -2 x_{3} & 1\end{array}\right|\left|\begin{array}{ccc}1 & 1 & 1 \\ y_{1} & y_{2} & y_{3} \\ y_{1}^{2} & y_{2}^{2} & y_{3}^{2}\end{array}\right|$
$=2\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)=2\left(\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)\right)^{2} \geq 0$
Alternatively: $|\mathrm{A}|=\left|\begin{array}{lll}\mathrm{x}_{1}^{2}-2 \mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{y}_{1}^{2} & \mathrm{x}_{1}^{2}-2 \mathrm{x}_{1} \mathrm{y}_{2}+\mathrm{y}_{2}^{2} & \mathrm{x}_{1}^{2}-2 \mathrm{x}_{1} \mathrm{y}_{3}+\mathrm{y}_{3}^{2} \\ \mathrm{x}_{2}^{2}-2 \mathrm{x}_{2} \mathrm{y}_{1}+\mathrm{y}_{1}^{2} & \mathrm{x}_{2}^{2}-2 \mathrm{x}_{2} \mathrm{y}_{2}+\mathrm{y}_{2}^{2} & x_{2}^{2}-2 \mathrm{x}_{2} \mathrm{y}_{3}+\mathrm{y}_{3}^{2} \\ \mathrm{x}_{3}^{2}-2 \mathrm{x}_{3} \mathrm{y}_{1}+\mathrm{y}_{1}^{2} & \mathrm{x}_{3}^{2}-2 \mathrm{x}_{3} \mathrm{y}_{2}+\mathrm{y}_{2}^{2} & x_{3}^{2}-2 \mathrm{x}_{3} \mathrm{y}_{3}+\mathrm{y}_{3}^{2}\end{array}\right|$

$$
=\left|\begin{array}{ccc}
0 & \left(x_{1}-x_{2}\right)^{2} & \left(x_{1}-x_{3}\right)^{2} \\
\left(x_{2}-x_{1}\right)^{2} & 0 & \left(x_{2}-x_{3}\right)^{2} \\
\left(x_{3}-x_{1}\right)^{2} & \left(x_{3}-x_{2}\right)^{2} & 0
\end{array}\right|
$$

22. Find the adjoint of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right]$.

Solution: We have $\left.|A|=\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array} \right\rvert\,$.

The cofactors of the elements of the first row of $|\mathrm{A}|$ are $\left|\begin{array}{ll}5 & 0 \\ 4 & 3\end{array}\right|,-\left|\begin{array}{ll}0 & 0 \\ 2 & 3\end{array}\right|,\left|\begin{array}{ll}0 & 5 \\ 2 & 4\end{array}\right|$ i.e., are 15, 0, - 10 respectively.

The cofactors of the elements of the second row of $|A|$ are $-\left|\begin{array}{ll}2 & 3 \\ 4 & 3\end{array}\right|,\left|\begin{array}{ll}1 & 3 \\ 2 & 3\end{array}\right|,-\left|\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right|$ i.e. are 6, $-3,0$ respectively.

The cofactors of the elements of the third row of $|A|$ are $\left|\begin{array}{ll}2 & 3 \\ 5 & 0\end{array},-\left|\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right|,\left|\begin{array}{ll}1 & 2 \\ 0 & 5\end{array}\right|\right.$ i.e., are - 15, 0, 5 respectively.

Therefore the adj. A = the transpose of the matrix B where
$B=\left[\begin{array}{ccc}15 & 0 & -10 \\ 6 & -3 & 0 \\ -15 & 0 & 5\end{array}\right] . \quad \therefore \quad \operatorname{adj} A=\left[\begin{array}{ccc}15 & 0 & -15 \\ 0 & -3 & 0 \\ -10 & 0 & 5\end{array}\right]$.
23. If A and B are square matrices of the same order, then $\operatorname{adj}(A B)=\operatorname{adj} B \cdot \operatorname{adj} A$.

Solution: We have $A B$ adj $(A B)=|A B| I_{n}=(\operatorname{adj} A B) A B$.
Also $\quad A B(\operatorname{adj} B \cdot \operatorname{adj} A)=A(B \operatorname{adj} B) \operatorname{adj} A$
$=A|B| I_{n} \operatorname{adj} A=|B|(A \operatorname{adj} A)$
$=|B||A| I_{n}=|B A| I_{n} \quad=|A B| I_{n}$.
Similarly, we have
$(\operatorname{adj} \mathrm{B} \operatorname{adj} \mathrm{A}) \mathrm{AB}=\operatorname{adj} \mathrm{B}[(\operatorname{adj} \mathrm{A}[(\operatorname{adj} \mathrm{A}) \mathrm{A}] \mathrm{B}$

$$
\begin{align*}
& =\operatorname{adj} B \cdot|A| I_{n} B=|A| \cdot(\operatorname{adj} B) B \\
& =|A| \cdot|B| I_{n}=|A B| I_{n} . \tag{3}
\end{align*}
$$

From (1), (2) and (3), the required result follows, provided $A B$ is non-singular.
Note : The result adj $(A B)=\operatorname{adj} B$ adj A holds goods even if A or B is singular. However the proof given above is applicable only if A and B are non-singular.
24. If $\left(I_{r}, m_{r}, n_{r}\right), r=1,2,3$ be the direction cosines of three mutually perpendicular lines referred to an orthogonal cartesian co-ordinate system, then prove that
$\left[\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right]$ is an orthogonal matrix.
Solution : Let $A=\left[\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right]$.
Then $A^{\prime}=\left[\begin{array}{ccc}l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3} \\ n_{1} & n_{2} & n_{3}\end{array}\right] . \quad$ We have $\quad A A^{\prime}=\left[\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right]\left[\begin{array}{ccc}l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3} \\ n_{1} & n_{2} & n_{3}\end{array}\right]$.
$=\left[\begin{array}{ccc}l_{1}^{2}+m_{1}^{2}+n_{1}^{2} & l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} & l_{1} l_{3}+m_{1} m_{2}+n_{1} n_{3} \\ l_{2} l_{1}+m_{2} m_{1}+n_{2} n_{1} & l_{2}^{2}+m_{2}^{2}+n_{2}^{2} & l_{2} l_{3}+m_{2} m_{3}+n_{2} m_{3} \\ l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1} & l_{3} n_{2}+m_{3} m_{2}+n_{3} n_{2} & l_{3}^{2}+m_{3}^{2}+n_{3}^{2}\end{array}\right] \quad=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$.
$\left[\begin{array}{cc}\therefore & \mathrm{I}_{1}^{2}+m_{1}^{2}+n_{1}^{2}=1 \text { etc. } \\ \text { and } & \mathrm{l}_{1} \mathrm{I}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{2} \mathrm{n}_{3}=0 \text { etc. }\end{array}\right]$ Hence the matrix A is orthogonal.
25. Obtian the characteristic equation of the matrix $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$ and verify that it is satisfied y A and hence find its inverse.
Solution : We have $|A-\lambda I|=\left|\begin{array}{ccc}1-\lambda & 0 & 2 \\ 0 & 2-\lambda & 1 \\ 2 & 0 & 3-\lambda\end{array}\right|$
$=(1-\lambda)(2-\lambda)(3-\lambda)+2[0-2(2-\lambda)]=(2-\lambda)[(1-\lambda)(3-\lambda)-4]$
$=(2-\lambda)\left[\lambda^{2}-4 \lambda-1\right]$
$\therefore \quad$ the characteristic equaion of A is
By the Cayley-Hamilton theorem

$$
\begin{equation*}
=-\left(\lambda^{3}-6 \lambda^{2}+7 \lambda+2\right) . \tag{i}
\end{equation*}
$$

$\lambda^{3}-6 \lambda^{2}+7 \lambda+2=0$
$A^{3}-6 A^{2}+7 A+2 I=0$.
Verification of (ii). We have
$A^{2}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right] \times\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13\end{array}\right]$.
Also $A^{3}=A \cdot A^{2}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right] \times\left[\begin{array}{ccc}5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13\end{array}\right]=\left[\begin{array}{lll}21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55\end{array}\right]$.
Now $A^{2}-6 A^{2}+7 A+2 I$
$=\left[\begin{array}{lll}21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55\end{array}\right]-6\left[\begin{array}{ccc}5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13\end{array}\right]+7\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]+2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\mathbf{0}$.
Hence Cayley-Hamilton theorem is verified. Now we shall compute A^{-1}.
Multiplying (ii) by A^{-1}, we get $\mathrm{A}^{2}-6 \mathrm{~A}+7 \mathrm{I}+2 \mathrm{~A}^{-1}=\mathbf{0}$.
$\therefore \quad A^{-1}=-\frac{1}{2}\left(A^{2}-6 A+7 I\right)=-\frac{1}{2}\left[\begin{array}{ccc}5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 3 & 13\end{array}\right]+3\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]-\frac{7}{2}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-3 & 0 & 2 \\ -1 & \frac{1}{2} & \frac{1}{2} \\ 2 & 0 & -1\end{array}\right]$.
26. Find the inverse of the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$.

Solution: We have

$$
|A|=\left|\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right|=\left|\begin{array}{ccc}
0 & 1 & 0 \\
1 & 2 & -1 \\
3 & 1 & -1
\end{array}\right| \text {, aplying } C_{3} \rightarrow C_{3} \rightarrow 2 C_{2}=-1\left|\begin{array}{ll}
1 & -1 \\
3 & -1
\end{array}\right|
$$

expanding the determinant along the first row $=-2$.
Since $|A| \neq 0$, therefore A^{-1} exists.
Now the cofactors of the elements of the first row of $|\mathrm{A}|$ are $\left|\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right|,-\left|\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right|,\left|\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right|$ i.e., are $-1,8,-5$ respectively.

The cofactors of the elements of the second row of $|A|$ are $-\left|\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right|,-\left|\begin{array}{ll}0 & 2 \\ 3 & 1\end{array}\right|,-\left|\begin{array}{ll}0 & 1 \\ 3 & 1\end{array}\right|$ i.e. are 1, $-6,3$ respectively.

The cofactors of the elements of the third row of $|\mathrm{A}|$ are $\left|\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right|,-\left|\begin{array}{ll}3 & 2 \\ 1 & 3\end{array}\right|,\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|$ i.e. are $-1,2,-1$ respectively.
Therefore the Adj. A = the transpose of the matrix B where
$B=\left[\begin{array}{ccc}-1 & 8 & -5 \\ 1 & -6 & 3 \\ -1 & 2 & -1\end{array}\right] . \quad \therefore \quad$ Adj. $\quad A=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ 5 & 3 & -1\end{array}\right]$.

Now $A^{-1}=\frac{1}{|A|}$ Adj. A and here $|A|=-2$.
$\therefore \quad A^{-1}=-\frac{1}{2}\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2}\end{array}\right]$.
27. Sove the equations

$$
\begin{aligned}
& \lambda x+2 y-2 z-1=0 \\
& 4 x+2 \lambda y-z-2=0
\end{aligned}
$$

$$
6 x+6 y+\lambda z-3=0, \quad \text { considering specially the case when } \lambda=2
$$

Solution : The matrix form of the given system is $\left[\begin{array}{ccc}\lambda & 2 & -2 \\ 4 & 2 \lambda & -1 \\ 6 & 6 & \lambda\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \ldots$. (i)
The given system of equations will have a unique solution if and only if the coefficient matrix is non-singular, i.e., iff

$$
\left|\begin{array}{ccc}
\lambda & 2 & -2 \\
4 & 2 \lambda & -1 \\
6 & 6 & \lambda
\end{array}\right| \neq 0 \quad \text { i.e., iff } \quad \lambda^{3}+11 \lambda-30 \neq 0
$$

i.e., iff $\quad(\lambda-2)\left(\lambda^{2}+2 \lambda+15\right) \neq 0$.

Now the only real root of the equation $(\lambda-2)\left(\lambda^{2}+2 \lambda+15\right) \neq 2=0$ is $\lambda=2$
Therefore if $\lambda \neq 2$, the given system of equations will have a unique solution given by

$$
\frac{x}{\left|\begin{array}{ccc}
1 & 2 & -2 \\
2 & 2 \lambda & -1 \\
3 & 6 & \lambda
\end{array}\right|}=\frac{y}{\left|\begin{array}{ccc}
\lambda & 1 & -2 \\
4 & 2 & -1 \\
6 & 3 & \lambda
\end{array}\right|}=\frac{z}{\left|\begin{array}{ccc}
\lambda & 2 & 1 \\
4 & 2 \lambda & 2 \\
6 & 6 & 3
\end{array}\right|}=\frac{1}{\left|\begin{array}{ccc}
\lambda & 2 & -2 \\
4 & 2 \lambda & -1 \\
6 & 6 & \lambda
\end{array}\right|}
$$

In case $\lambda=2$, the equation (i) becomes

$$
\left[\begin{array}{ccc}
2 & 2 & -2 \\
4 & 4 & -1 \\
6 & 6 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

Performing $R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}$, we get

$$
\left[\begin{array}{ccc}
2 & 2 & -2 \\
0 & 0 & 3 \\
0 & 0 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

The above system of equations is equivalent to $8 z=0,3 z=0,2 x+2 y-2 z=1$.
$\therefore \quad x=\frac{1}{2}-c, y=c, z=0$ consititute the general solution of the given system of equations in case $\lambda=2$.

$$
x_{1}+2 x_{2}+3 x_{3}=4
$$

28. Solve $4 x_{1}+5 x_{2}+6 x_{3}=7$

$$
7 x_{1}+8 x_{2}+9 x_{3}=10
$$

$$
x_{1}+2 x_{2}+3 x_{3}=4
$$

$$
x_{1}+2 x_{2}+3 x_{3}=4
$$

Solution

$$
4 x_{1}+5 x_{2}+6 x_{3}=7 \xrightarrow[-7 E 1+E 3]{04 E 1+E 2}
$$

$$
-3 x_{2}-6 x_{3}=-9
$$

$$
7 x_{1}+8 x_{2}+9 x_{3}=10
$$

$$
-6 x_{2}-12 x_{3}=-18
$$

$\xrightarrow{-2 \mathrm{E}_{2}+\mathrm{E} 3} \quad$| $\mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}$ | $=4$ |
| ---: | :--- |
| $-3 \mathrm{x}_{2}-6 \mathrm{x}_{3}$ | $=-9$ |
| 0 | $=0$ |$\quad \xrightarrow{-\frac{1}{3} \mathrm{E}_{2}} \quad$| $\mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}$ | $=4$ |
| ---: | :--- |
| $\mathrm{x}_{2}-2 \mathrm{x}_{3}$ | $=3$ |
| 0 | $=0$ |

Now we have only two equations in three unknowns. In the second equation, we can let $x_{3}=k$, where k is any complex number. Then $x_{2}=3-2 k$. Substituting $s_{3}=k$ and $x_{2}=3-2 k$ into the first eqution, we have

$$
x_{1}=4-2 x_{2}-3 x_{3}=4-2(3-2 k)-3(k)=-2+k
$$

Thus the general solution is

$$
\begin{array}{ll}
& \\
x_{1}=-2+k \\
x_{2}=3-2 k \\
x_{3}=k
\end{array}
$$

And we see that the system has an infinite number of solutions. Specific solutions can be generated by choosing specific values for k.
29. Find the rank of the matrix $A=\left[\begin{array}{llll}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1\end{array}\right]$.

Solution : We have $A \sim\left[\begin{array}{llll}4 & 2 & 1 & 0 \\ 6 & 3 & 4 & 0 \\ 2 & 1 & 0 & 0\end{array}\right]$ by $C_{4} \rightarrow C_{4}-C_{2}-C_{2}$

$$
\sim\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-10 & -5 & 4 & 0 \\
2 & 1 & 0 & 0
\end{array}\right] \text { by } C_{2} \rightarrow C_{2}-2 C_{3}, C_{1} \rightarrow C_{1}-4 C_{3}
$$

We see that each minor of order 3 in the last equivalent matrix is equal to zero. But there is a minor of order 2 i.e., $\left|\begin{array}{cc}-5 & 4 \\ 1 & 0\end{array}\right|$ which is equla to -4 i.e. , $\neq 0$. Here $\operatorname{rank} A=2$.
30. Find the rank of the martix $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$

Solution: We have the matrix $A \sim\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$ by $R_{4} \rightarrow R_{4} \rightarrow R_{3}-R_{2}-R_{1}$
or $\quad A \sim\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & 0 & -3 & 2 \\ 0 & -4 & -8 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$ by $R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}$.

Note E-transformations do not change the rank of a matrix. We see that the determinant of the last equivalent matrix is zero. But the leading minor of the third order of this matrix
i.e. $\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 0 & -3 \\ 0 & -4 & -8\end{array}\right]=-12$ i.e. $\neq 0$. Therefore the rank of this matrix is 3 . Hence rank $A=3$.
31. Number of triplets of $a, b \& c$ for which the system of equations,

$$
a x-b y=2 a-b \text { and }(c+1) x+c y=10-a+3 b
$$

has infinitely many solutions and $x=1, y=3$ is one of the solutions, is :
(A) exactly one
(B) exactly two
(C) exactly three
(D) infinitely many

Solution: put $x=1 \& y=3$ in $1^{\text {st }}$ equation $\Rightarrow a=-2 b$ \& from $2^{\text {nd }}$ equation $\mathrm{c}=\frac{9+5 \mathrm{~b}}{4}$; Now use $\frac{\mathrm{a}}{\mathrm{c}+1}=-\frac{\mathrm{b}}{\mathrm{c}}=\frac{2 \mathrm{a}-\mathrm{b}}{10-\mathrm{a}+3 \mathrm{~b}}$; from first two $\mathrm{b}=0$ or $\mathrm{c}=1$;
if $b=0 \Rightarrow a=0 \& c=9 / 4 ;$ if $c=1 ; b=-1 ; a=2$

$$
x_{1}+2 x_{2}+3 x_{3}=4
$$

32. Solve

$$
\begin{array}{r}
4 x_{1}+5 x_{2}+6 x_{3}=7 \\
7 x_{1}+8 x_{2}+9 x_{3}=12
\end{array}
$$

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=4 \\
\text { Solution : } \quad 4 x_{1}+5 x_{2}+6 x_{3}=7 \\
7 x_{1}+8 x_{2}+9 x_{3}=12
\end{array}
$$

$$
\left(\begin{array}{lll|c}
1 & 2 & 3 & 4 \\
4 & 5 & 6 & 7 \\
7 & 8 & 9 & 12
\end{array}\right) \quad \xrightarrow[-7 E 2+\mathrm{E} 3]{-4 \mathrm{E} 1+\mathrm{E} 2}\left(\begin{array}{ccc|c}
1 & 2 & 3 & 4 \\
0 & -3 & -6 & -9 \\
0 & -6 & -12 & -16
\end{array}\right)
$$

$$
\xrightarrow{-2 E 2+E 3}\left(\begin{array}{ccc|c}
1 & 2 & 3 & 4 \\
0 & -3 & -6 & -9 \\
0 & 0 & 0 & 2
\end{array}\right) \quad \begin{aligned}
& x_{1}+2 x_{2}+3 x_{2}=4 \\
& 0 x_{1}-3 x_{2}-6 x_{3}=-9 \\
& 0 x_{1}+0 x_{2}+0 x_{3}=2
\end{aligned}
$$

The last equation, $0=2$, can never hold regardless of the values assigned to x_{1}, x_{2} and x_{3}. Because the last (equivalent) system has no solution, the original system of equations has no solution.
33. Solve

$$
\begin{aligned}
x_{2}-x_{3} & =-9 \\
2 x_{1}-x_{2}+4 x_{3} & =29 \\
x_{1}+x_{2}-3 x_{3} & =-20
\end{aligned}
$$

by reducing the augmented matrix of the system to reduced row echelon form.
Solution : $\left(\begin{array}{ccc|c}0 & 1 & -1 & -9 \\ 2 & -1 & 4 & 29 \\ 1 & 1 & -3 & -20\end{array}\right) \xrightarrow{R 1 \leftrightarrow R 3}\left(\begin{array}{ccc|c}1 & 1 & -3 & -20 \\ 2 & -1 & 4 & 29 \\ 0 & 1 & -1 & -9\end{array}\right)$
$\xrightarrow{-2 R 1+\mathrm{R} 2}\left(\begin{array}{ccc|c}1 & 1 & -3 & -20 \\ 0 & -3 & 10 & 69 \\ 0 & 1 & -1 & -9\end{array}\right) \xrightarrow{-\frac{1}{3} \mathrm{R} 2}\left(\begin{array}{ccc|c}1 & 1 & -3 & -20 \\ 0 & 1 & -\frac{10}{3} & -23 \\ 0 & 1 & -1 & -9\end{array}\right)$
$\xrightarrow{-\mathbb{R} 2+\mathrm{R} 3}\left(\begin{array}{ccc|c}1 & 1 & -3 & -20 \\ 0 & 1 & -\frac{10}{3} & -23 \\ 0 & 0 & \frac{7}{3} & 14\end{array}\right) \xrightarrow{\frac{3}{7} \mathrm{R} 3}\left(\begin{array}{ccc|c}1 & 1 & -3 & -20 \\ 0 & 1 & -\frac{10}{3} & -23 \\ 0 & 0 & 1 & 6\end{array}\right)$
$\xrightarrow[\substack{3 R 3+R 1 \\-1 R 2+R 1}]{\frac{10}{3} R 3+R 2}\left(\begin{array}{lll|c}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 6\end{array}\right)$
It is easy to see that $x_{1}=1, x_{2}=-3, x_{3}=6$.
The process of solving a system by reducing the augmented matrix to reduced row echelon form is called Gauss-Jordan elimination.
34. Solve completely the system of equations
$x+y+z=0, \quad 2 x-y-3 z=0, \quad 3 x-5 y+4 z=0, \quad x+17 y+4 z=0$,
Solution : The given system of equations is equivalent to the single matrix equation
$A X=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & -1 & -3 \\ 3 & -5 & 4 \\ 1 & 17 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0$.
We shall first find the rank of the coefficient matrix A by reducing it to Echelon form by applying elementary row transformations only. Applying $R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}, R_{4} \rightarrow R_{4}-R_{1}$, we get
$A \sim\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & -5 \\ 0 & -8 & 1 \\ 0 & 16 & 3\end{array}\right] \quad \sim\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & -5 \\ 0 & -24 & 3 \\ 0 & 48 & 9\end{array}\right]$ by $R_{3} \rightarrow 3 R_{3}, R_{4} \rightarrow 3 R_{4}$
$\sim\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & -5 \\ 0 & 0 & 43 \\ 0 & 0 & -71\end{array}\right]$ by $R_{3} \rightarrow R_{3}-8 R_{2}, R_{4} \rightarrow R_{4}+16 R_{2} . \quad \sim\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -3 & -5 \\ 0 & 0 & 43 \\ 0 & 0 & 0\end{array}\right]$ by $R_{4} \rightarrow R_{4}+\frac{71}{43} R_{3}$.
Above is the Echelon form of the coefficient matrix A. We have rank $A=$ the number of non zero rows in this Echelon form $=3$. The number of unknowns is also 3 . Sice rank A is equal to the number of unknowns, therefore the given system of equations possesses no non-zero solution. Hence the zero solution i.e. $x=y=z=0$ is the only solution of the given system of equations.
35. Solve completely the system of equations

$$
\begin{array}{r}
4 x+2 y+z+3 u=0 \\
6 x+3 y+4 z+7 u=0 \\
2 x+y+u=0
\end{array}
$$

Solution : The matrix form of the given system is

$$
\left[\begin{array}{llll}
4 & 2 & 1 & 3 \\
6 & 3 & 4 & 7 \\
2 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
u
\end{array}\right]=\mathbf{0}
$$

or $\left[\begin{array}{llll}1 & 2 & 4 & 3 \\ 4 & 3 & 6 & 7 \\ 0 & 1 & 2 & 1\end{array}\right]\left[\begin{array}{l}z \\ y \\ x \\ u\end{array}\right]=O$, interchanging the variables x and z.

Performing $R_{2} \rightarrow R_{2}-4 R_{1}$, we get $\left[\begin{array}{cccc}1 & 2 & 4 & 3 \\ 0 & -5 & -10 & -5 \\ 0 & 1 & 2 & 1\end{array}\right]\left[\begin{array}{l}z \\ y \\ x \\ u\end{array}\right]=\mathbf{O}$.
Performing $R_{2} \rightarrow-\frac{1}{5} R_{2}$, we get $\left[\begin{array}{llll}1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1\end{array}\right]\left[\begin{array}{l}z \\ y \\ x \\ u\end{array}\right]=\mathbf{0}$.
Performing $R_{3} \rightarrow R_{3}-R_{2}$, we get $\left[\begin{array}{llll}1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}z \\ y \\ x \\ u\end{array}\right]=\mathbf{0}$.
The coefficient matrix is of rank 2 and therefore the given system will have $4-2$ i.e. 2 linearly independent solutions. The given system of equations is equivalent to

$$
\begin{aligned}
& z+2 y+4 x+3 u=0, \\
& y+2 x+u=0 . \\
\therefore \quad & y=-2 x-u, z=-4 x-3 u+4 x+2 u=-u . \\
\therefore \quad & x=c_{1}, u=c_{2}, y=-2 c_{1}-c_{2}, z=c_{2}
\end{aligned}
$$

consitute the general solution where c_{1} and c_{2} are arbitrary constats.
36. Determine conditions on a, b and c so that

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =a \\
4 x_{1}+5 x_{2}+6 x_{3} & =b \\
7 x_{1}+8 x_{2}+9 x_{3} & =c
\end{aligned}
$$

will have no solutions or have an infinite number of solution.
Solution : $\left(\begin{array}{ccc|c}1 & 2 & 3 & a \\ 0 & -3 & -6 & b-4 a \\ 0 & 0 & 0 & c-2 b+a\end{array}\right)$
If $c-2 b+a \neq 0$, then no solution exists. If $c-2 b+a=0$, we have two equations in three unknowns and we can set x_{3} arbitrarily and then solve for x_{1} and x_{2}.

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =0 \\
4 x_{1}+5 x_{2}+6 x_{3} & =0 \\
7 x_{1}+8 x_{2}+9 x_{3} & =0 \\
10 x_{1}+11 x_{2}+12 x_{3} & =0
\end{aligned}
$$

37. Solve $7 x_{1}+8 x_{2}+9 x_{3}=0$

Solution: Using Gaussian elimination with the augmented matrix.

$$
\left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
10 & 11 & 12 & 0
\end{array}\right) \xrightarrow[-10 E 1+E 4]{\substack{-4 E 1+E 2 \\
-7 E+E 3}}\left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
0 & -3 & -6 & 0 \\
0 & -6 & -12 & 0 \\
0 & -9 & -18 & 0
\end{array}\right)
$$

$$
\xrightarrow{-\frac{1}{3} \mathrm{E} 2}\left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & -6 & -12 & 0 \\
0 & -9 & -18 & 0
\end{array}\right) \xrightarrow[9 \mathrm{EE}+\mathrm{E} 2]{6 \mathrm{E} 2+\mathrm{E}}\left(\begin{array}{lll|l}
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Therefore

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =0 \\
x_{2}+2 x_{3} & =0
\end{aligned}
$$

and setting $x_{3}=k$ gives

$$
x_{2}=-2 k
$$

$$
x_{1}=-2 x_{2}-3 x_{3}=4 k-3 k=k
$$

So we have

$$
\begin{aligned}
& x_{1}=k \\
& x_{2}=-2 k \\
& x_{3}=k
\end{aligned}
$$

38. Show that the equations

$$
\begin{aligned}
& x+2 y-z=3 \\
& 3 x-y+2 z=1 \\
& 2 x-2 y+3 z=2
\end{aligned}
$$

$$
x-y+z=1 \quad \text { are consistent and solve them. }
$$

Solution: The given system of equations is equivalent to the single matrix equaion
$A X=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 3 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ 1 \\ 2 \\ -1\end{array}\right]=B$.

Performing $R_{2} \rightarrow R_{2}-3 R_{1}, R_{3} \rightarrow R_{3}-2 R_{1}, R_{4} \rightarrow R_{4}-R_{1}$, we get
$\left[\begin{array}{ll}A & \mathrm{~B}\end{array}\right] \sim\left[\begin{array}{cccc}1 & 2 & -1: & 3 \\ 0 & -7 & 5: & -8 \\ 0 & -6 & 5: & -4 \\ 0 & -3 & 2: & -4\end{array}\right] \sim\left[\begin{array}{cccc}1 & 2 & -1: & 3 \\ 0 & -1 & 0 & -4 \\ 0 & -6 & 5: & -4 \\ 0 & -3 & 2: & -4\end{array}\right]$ by $R_{2} \rightarrow R_{2}-R_{3}$
$\sim\left[\begin{array}{cccc}1 & 2 & -1: & 3 \\ 0 & -1 & 0 & : \\ 0 & 0 & 5: & 20 \\ 0 & 0 & 2: & 8\end{array}\right]$ by $R_{3} \rightarrow R_{3}-6 R_{2}, R_{4} \rightarrow R_{4}-3 R_{2}$,
$\sim\left[\begin{array}{cccc}1 & 2 & -1: & 3 \\ 0 & -1 & 0: & -4 \\ 0 & 0 & 1: & 4 \\ 0 & 0 & 1: & 4\end{array}\right]$, by $R_{3} \rightarrow \frac{1}{5} R_{3}, R_{4} \rightarrow \frac{1}{2} R_{4}$
$\sim\left[\begin{array}{cccc}1 & 2 & -1: & 3 \\ 0 & -1 & 0 & : \\ 0 & 0 & 1: & 4 \\ 0 & 0 & 0: & 0\end{array}\right]$, by $R_{4} \rightarrow R_{4}-R_{3}$.
Thus the matrix $\left[\begin{array}{ll}A & B\end{array}\right]$ has been reduced to Echelon form. We have rank $[A B]=$ the number of non-zero rows in this Echelon form $=3$. Also
$A \sim\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
We have rank $A=3$. Since rank $\left[\begin{array}{ll}A & B\end{array}\right]=$ rank A, therefore the given equations are consistent, . Since rank $A=3=$ the number of unknowns, therefore the given equations have unique solution.
The given equations are equivalent to the equations

$$
x+2 y-z=3,-y=-4, z=4
$$

These give $z=4, y=4, x=-1$.

